Relation Between Motility, Accelerated Aging and Gene Expression in Selected Drosophila Strains under Hypergravity Conditions

Abstract

Motility and aging in Drosophila have proven to be highly modified under altered gravity conditions (both in space and ground simulation facilities). In order to find out how closely connected they are, five strains with altered geotactic response or survival rates were selected and exposed to an altered gravity environment of 2g. By analysing the different motile and behavioural patterns and the median survival rates, we show that altered gravity leads to changes in motility, which will have a negative impact on the flies’ survival. Previous results show a differential gene expression between sessile samples and adults and confirm that environmentally-conditioned behavioural patterns constrain flies’ gene expression and life span. Therefore, hypergravity is considered an environmental stress factor and strains that do not respond to this new environment experience an increment in motility, which is the major cause for the observed increased mortality also under microgravity conditions. The neutral-geotaxis selected strain (strain M) showed the most severe phenotype, unable to respond to variations in the gravitational field. Alternatively, the opposite phenotype was observed in positive-geotaxis and long-life selected flies (strains B and L, respectively), suggesting that these populations are less sensitive to alterations in the gravitational load. We conclude that the behavioural response has a greater contribution to aging than the modified energy consumption in altered gravity environments.

This is a preview of subscription content, access via your institution.

References

  1. Altman, D.G.: Practical Statistics for Medical Research. Chapman & Hall, London (1991)

    Google Scholar 

  2. Beaugnon, E., Tournier, R.: Levitation of organic materials. Nature 349, 470 (1991a)

    Article  Google Scholar 

  3. Beaugnon, E., Tournier, R.: Levitation of water and organic substances in high static magnetic fields. J. Phys., III France 1, 1423–1428 (1991b)

    Article  Google Scholar 

  4. Benguria, A., Grande, E., de Juan, E., Ugalde, C., Miquel, J., Garesse, R., Marco, R.: Microgravity effects on Drosophila melanogaster behavior and aging. Implications of the IML-2 experiment. J. Biotechnol. 47(2–3), 191–201 (1996)

    Article  Google Scholar 

  5. de Juan, E., Benguría, A., Villa, A., Leandro, L.J., Herranz, R., Duque, P., Horn, E.,Medina, F.J., van Loon, J.,Marco, R.: The “AGEING” experiment in the Spanish soyuz mission to the international space station. Microgravity Sci. Technol. 19(3–4), 170–174 (2007)

    Article  Google Scholar 

  6. Herranz, R., Laván, D.A., Dijkstra, C., Larkin, O., Davey, M., Medina, F.J., van Loon, J.J.W.A., Marco, R., Schiller, P.: Drosophila behaviour & gene expression in altered gravity conditions: comparison between space and ground facilities. In: Proc. of the ‘Life in Space for Life on Earth Symposium’, Angers, France, 22–27 June 2008 (ESA SP-663, December 2008) (2008)

  7. Herranz, R., Benguria, A., Lavan, D.A., Lopez-Vidriero, I., Gasset, G., Medina, F.J., van Loon, J.J., Marco, R.: Spaceflight-related suboptimal conditions can accentuate the altered gravity response of drosophila transcriptome. Mol. Ecol. 19, 4255–4264 (2010). doi:10.1111/j.1365-294X.2010.04795.x

    Article  Google Scholar 

  8. Herranz, R., Larkin, O.J., Dijkstra, C.E., Hill, R.J.A., Anthony, P., Davey, M.R., Eaves, L., van Loon, J.J.W.A., Medina, F.J., Marco, R.: Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of drosophila melanogaster. BMC Genomics 13, 52 (2012). doi:10.1186/1471-2164-13-52

    Article  Google Scholar 

  9. Herranz, R., Anken, R., Boonstra, J., Braun, M., Christianen, P.C.M., Geest, M.D., Hauslage, J., Hilbig, R., Hill, R.J.A., Lebert, M., Medina, F.J., Vagt, N., Ullrich, O., van Loon, J.J.W.A., Hemmersbach, R.: Ground-based facilities for simulation of microgravity, including terminology and organism-specific recommendations for their use. Astrobiology 13(1) (2013). doi:10.1089/ast.2012.0876

  10. Herranz, R., Larkin, O.J., Dijkstra, C.E., Hill, R.J.A., Anthony, P., Davey, M.R., Eaves, L., van Loon, J.J.W.A., Medina, F.J., Marco, R.: Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of drosophila melanogaster. BMC Genomics 13, 52 (2012b). doi:10.1186/1471-2164-13-52

    Article  Google Scholar 

  11. Hill, R.J., Larkin, O.J., Dijkstra, C.E., Manzano, A.I., de Juan, E., Davey, M.R., Anthony, P., Eaves, L., Medina, F.J., Marco, R., Herranz, R.: Effect of magnetically simulated zero-gravity and enhanced gravity on the walk of the common fruitfly. J. R. Soc. Interface 9(72), 1438–1449 (2012). doi:10.1098/rsif.2011.0715

    Article  Google Scholar 

  12. Marco, R., Vernos, I., Gonzalez, J., Calleja, M.: Embryogenesis and aging of Drosophila melanogaster flown in the space shuttle. Preliminary analysis of experiment fly 15E. Naturwissenschaften 73(7), 431–432 (1986)

    Article  Google Scholar 

  13. Marco, R., Gonzalez-Jurado, J., Calleja, M., Garesse, R., Maroto, M., Ramirez, E., Holgado, M.C., de Juan, E., Miquel, J.: Microgravity effects on Drosophila melanogaster development and aging: comparative analysis of the results of the Fly experiment in the Biokosmos 9 biosatellite flight. Adv. Space Res. 12(1), 157–166 (1992)

    Article  Google Scholar 

  14. Marco, R., Benguria, A., Sanchez, J., de Juan, E.: Effects of the space environment on drosophila melanogaster development. Implications of the IML-2 experiment. J. Biotechnol. 47(2–3), 179–189 (1996)

    Article  Google Scholar 

  15. Motulsky, H.: Intuitive Biostatistics. Chapter 6: Survival Curves. Oxford University Press (1995). http://www.graphpad.com/www/book/survive.htm. Accessed 6 Oct 2011

  16. R Core Team: R: a language and enviroment for statistical computing (2011). http://www.R-project.org/

  17. Reiter, L.T., Potocki, L., Chien, S., Gribskov, M., Bier, E.: A systematic analysis of human disease-associated gene sequences in drosophila melanogaster. Genome Res. 11(6), 1114–1125 (2001). doi:10.1101/gr.169101

    Article  Google Scholar 

  18. Serrano, P., van Loon, J.J., Manzano, A.I., Medina, F.J., Herranz, R.: Selection of drosophila altered behaviour & aging strains for microgravity research. In: Proc. of the ‘Life in Space for Life on Earth Symposium’, Trieste, Italy, 14–18 June 2010 (ESA SP-685) (2010)

  19. Shaw, P., Ocorr, K., Bodmer, R., Oldham, S.: Drosophila aging 2006/2007. Exp. Gerontol. 43(12), 5–10 (2008). doi:10.1016/j.exger.2007.10.008

    Article  Google Scholar 

  20. Valles, J.M., Jr., Guevorkian, K.: Low gravity on earth by magnetic levitation of biological material. J. Gravit. Physiol 9(1), P11–14 (2002)

    Google Scholar 

  21. van Loon, J.J.W.A.: Some history and use of the random positioning machine, RPM, in gravity related research. Adv. Space Res. 39, 1161–1165 (2007)

    Article  Google Scholar 

  22. van Loon, J.J.W.A., Krause, J., Cunha, H., Goncalves, J., Almeida, H., Schiller, P.: The large diameter centrifuge, LDC, for life and physical sciences and technology. In: Proc. of the ‘Life in Space for Life on Earth Symposium’, Angers, France, 22–27 June 2008 (ESA SP-663, December 2008) (2008)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raúl Herranz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 655 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Serrano, P., van Loon, J.J.W.A., Medina, F.J. et al. Relation Between Motility, Accelerated Aging and Gene Expression in Selected Drosophila Strains under Hypergravity Conditions. Microgravity Sci. Technol. 25, 67–72 (2013). https://doi.org/10.1007/s12217-012-9334-5

Download citation

Keywords

  • Drosophila
  • Motility
  • Aging
  • Altered gravity