Skip to main content
Log in

Viscous Potential Flow Analysis of Nonlinear Rayleigh–Taylor Instability with Heat and Mass Transfer

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The nonlinear analysis of Rayleigh–Taylor instability of two viscous fluids is studied when there is heat and mass transfer across the interface, using viscous potential flow theory. The fluids are considered to be viscous and incompressible with different kinematic viscosities. The analysis is based on the method of multiple scale perturbation and the nonlinear stability is governed by first-order nonlinear partial differential equation. The stability conditions are obtained and stability is discussed theoretically as well as numerically. Regions of stability and instability have been shown graphically indicating the effect of various parameters. It has been observed that the heat and mass transfer has stabilizing effect on the stability of the system in the nonlinear analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asthana, R., Agrawal, G.S.: Viscous potential flow analysis of Kelvin–Helmholtz instability with mass transfer and vaporization. Phys. A 382, 389–404 (2007)

    Article  Google Scholar 

  • Awasthi, M.K., Agrawal, G.S.: Viscous potential flow analysis of Rayleigh–Taylor instability with heat and mass transfer. Int. J. Appl. Math. Mech. 7(12), 73–84 (2011)

    MATH  Google Scholar 

  • Awasthi, M.K., Agrawal, G.S.: Nonlinear analysis of capillary instability with heat and mass transfer. Commun. Nonlinear Sci. Numer. Simul. 17, 2463–2475 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Awasthi, M.K., Asthana, R., Agrawal, G.S.: Pressure corrections for the potential flow analysis of Kelvin–Helmholtz instability with heat and mass transfer. Int. J. Heat Mass Transfer 55, 2345–2352 (2012)

    Article  Google Scholar 

  • Casado, G.G., Tofaletti, L., Müller, D., D’Onofrio, A.: Rayleigh–Taylor instabilities in reaction-diffusion systems inside Hele-Shaw cell modified by the action of temperature. J. Chem. Phys. 126, 114502–114508 (2007)

    Article  Google Scholar 

  • Chandrasekhar, S.: Hydrodynamic and Hydro-magnetic Stability. Dover Publications, New York (1981)

    Google Scholar 

  • D’Hernoncourt, J., Dewit, A.: Influence of heat losses on nonlinear fingering dynamics of exothermic autocatalytic fronts. Phys. D 239, 819–830 (2010)

    Article  MATH  Google Scholar 

  • Drazin P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  • Elcoot, A.E.K.: Electroviscous potential flow in nonlinear analysis of capillary instability. Eur. J. Mech. B Fluids 26, 431–443 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Funada, T., Joseph, D.D.: Viscous potential flow analysis of Kelvin–Helmholtz instability in a channel. J. Fluid Mech. 445, 263–283 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Ho, S.P.: Linear Rayleigh–Taylor stability of viscous fluids with mass and heat transfer. J. Fluid Mech. 101, 111–127 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Hsieh, D.Y.: Effect of heat and mass transfer on Rayleigh–Taylor instability. Trans. ASME 94D, 156–162 (1972)

    Google Scholar 

  • Hsieh, D.Y.: Nonlinear Rayleigh–Taylor instability with mass and heat transfer. Phys. Fluids 22, 1435–1439 (1979)

    Article  MATH  Google Scholar 

  • Joseph, D.D., Liao, T.: Potential flows of viscous and viscoelastic fluids. J. Fluid Mech. 256, 1–23 (1994)

    Article  MathSciNet  Google Scholar 

  • Joseph, D.D., Belanger, J., Beavers, G.S.: Breakup of a liquid drop suddenly exposed to a high-speed airstream. Int. J. Multiphase Flow 25, 1263–1303 (1999)

    Article  MATH  Google Scholar 

  • Joseph, D.D., Funada, T., Wang, J.: Potential Flows of Viscous and Viscoelastic Fluids. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  • Khodaparast, K.A., Kawaji, M., Antar, B.N.: The Rayleigh–Taylor and Kelvin–Helmholtz stability of a viscous liquid-vapor interface with heat and mass transfer. Phys. Fluids 7, 359–364 (1994)

    Article  Google Scholar 

  • Kim, H.J., Kwon, S.J., Padrino, J.C., Funada, T.: Viscous potential flow analysis of capillary instability with heat and mass transfer. J. Phys. A: Math. Theor. 41, 335205 11 (2008)

    MathSciNet  Google Scholar 

  • Lee, D.S.: Nonlinear Kelvin–Helmholtz instability of fluid layers with mass and heat transfer. J. Phys. A: Math. Gen. 38, 2803–2817 (2005)

    Article  MATH  Google Scholar 

  • Lewis, D.J.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes.11. Proc. R. Soc. London, Ser. A 201, 81–96 (1950)

    Google Scholar 

  • Martin, J., Rakotomalala, N., Salin, D., Böckmann, M.: Buoyancy-driven instability of an autocatalytic reaction front in a Hele-Shaw cell. Phys. Rev. E 65, 051605–051610 (2002)

    Article  Google Scholar 

  • Martin, J., Rakotomalala, N., Talon, L., Salin, D.: Measurement of the temperature profile of an exothermic autocatalytic reaction front. Phys. Rev. E 80, 055101–055104 (2009)

    Article  Google Scholar 

  • Ozen, O., Narayanan, R.: The physics of evaporative and convective instabilities in bilayer system: linear theory. Phys. Fluids 16, 4644 (2004)

    Article  Google Scholar 

  • Ozen, O., Narayanan, R.: A Note on the Rayleigh Taylor problem with evaporation. Phys. Fluids 18, 042110 (2006)

    Article  Google Scholar 

  • Rayleigh, L.: Scientific Paper, vol. II. pp. 200–207. U.P., Cambridge, Cambridge (1990)

  • Taylor, G.I.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. R. Soc. London, Ser. A 201, 192–196 (1950)

    Article  MATH  Google Scholar 

  • Zhivonitko, V.V., Koptyug, I.V., Sagdeev, R.Z.: Temperature changes visualization during chemical wave propagation. J. Phys. Chem. A 111, 4122–4124 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Kumar Awasthi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awasthi, M.K., Asthana, R. & Agrawal, G.S. Viscous Potential Flow Analysis of Nonlinear Rayleigh–Taylor Instability with Heat and Mass Transfer. Microgravity Sci. Technol. 24, 351–363 (2012). https://doi.org/10.1007/s12217-012-9327-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-012-9327-4

Keywords

Navigation