Microgravity Science and Technology

, Volume 25, Issue 1, pp 27–33 | Cite as

Study of Edge Effect to Stop Liquid Spillage for Microgravity Application

  • Viktor GrishaevEmail author
  • A. Amirfazli
  • Sergey Chikov
  • Yuriy Lyulin
  • Oleg Kabov
Original Article


The ability of a micro-groove to prevent the spreading of HFE-7100 fluid (C4F9OCH3) having low surface tension (γ = 13.6 mN/m) on a surface is studied. In this study, micro-grooves were made around square openings of a plate made of either polycarbonate or 316 stainless steel. To verify effectiveness of micro-grooves to stop the spread of HFE-7100, experiments were done under non-saturated and saturated conditions. Under non-saturated conditions the micro-grooves on both materials confined the liquid up to apparent angle of 55 ± 5° due to the edge effect. Saturated gas-vapor mixture with vapor mass fraction of w v = 88% and w v = 97% did not significantly influence the confinement of the liquid by the micro-groove. This result is promising for application of micro-grooved plates in CIMEX experiment planned for ISS.


Liquid spreading Liquid pinning Edge effect Micro-groove Low surface tension Wetting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bayramli, E., Mason, S.G.: Liquid spreading: edge effect for zero contact angle. J. Colloid Interface Sci. 66, 200–202 (1978)CrossRefGoogle Scholar
  2. Fang, G., Amirfazli, A.: Understanding the edge effect in wetting: a thermodynamic approach. Langmuir (2012). doi: 10.1021/la301623h Google Scholar
  3. Gibbs, J.W.: Scientific Papers, p. 326 (1906)Google Scholar
  4. Iorio, C.S., Kabov, O.A., Legros, J.-C.: Thermal Patterns in evaporating liquid. Microgravity Sci. Technol. XIX-3/4, 27–29 (2007)CrossRefGoogle Scholar
  5. Iorio, C.S., Goncharova, O.N., Kabov, O.A.: Heat and mass transfer control by evaporative thermal pattering of thin liquid layers. Comput. Therm. Sci. 3, 333–342 (2011)CrossRefGoogle Scholar
  6. Israelachvili, J.N.: Intermolecular and Surface Forces, 3rd edn. Elsevier (2011)Google Scholar
  7. Oliver, J.F., Huh, C., Mason, S.G.: Resistance to spreading of liquids by sharp edges. J. Colloid Interface Sci. 59, 568–581 (1977)CrossRefGoogle Scholar
  8. Sheng, X., Zhang, J., Jiang, L.: Application of the restricting flow of solid edges in fabricating superhydrophobic surfaces. Langmuir 25, 9903–9907 (2009)CrossRefGoogle Scholar
  9. Tóth, B.: Future experiments to measure liquid-gas phase change and heat transfer phenomena on the international space station. Microgravity Sci. Technol. (2011). doi: 10.1007/s12217-011-9286-1
  10. Tóth, T., Ferraro, D., Chiarello, E., Pierno, M., Mistura, G., Bissacco, G., Semprebon, C.: Suspension of water droplets on individual pillars. Langmuir 27, 4742–4748 (2011)CrossRefGoogle Scholar
  11. Yu, L.M.Y., Lu J.J., Chan, Y.W., Ng, A., Zhang, L., Hoorfar, M., Policova, Z., Grundke, K., Neumann, A.W.: Constrained sessile drop as a new configuration to measure low surface tension in lung surfactant systems. J. Appl. Physiol. 97, 704–715 (2004)CrossRefGoogle Scholar
  12. 3M: Novec™ Engineered Fluid HFE-7100 for Heat Transfer.–&fn=apinfo_hfe7100_HT.pdf (2002). Accessed 2 Sept 2010

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Viktor Grishaev
    • 1
    Email author
  • A. Amirfazli
    • 2
  • Sergey Chikov
    • 1
  • Yuriy Lyulin
    • 1
  • Oleg Kabov
    • 3
    • 4
  1. 1.Chimie-Physique EP-CP165/62, Microgravity Research CenterUniversite Libre de BruxellesBruxellesBelgium
  2. 2.Department of Mechanical EngineeringUniversity of AlbertaEdmontonCanada
  3. 3.Institute of Thermophysics, Russian Academy of SciencesNovosibirskRussia
  4. 4.Centre of Smart IterfacesTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations