Skip to main content

Advertisement

Log in

Effect of Hypergravity and Phytohormones on Isoflavonoid Accumulation in Soybean (Glycine max. L.) Callus

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The objective of this study was to explore the potential interaction between gravity and growth hormones on isoflavonoid accumulation. Soybean callus (Glycine max (L.) Merr. cv. ‘Acme’) was grown in the dark for 16 days at 22 °C in a growth medium supplemented with four different combinations of phytohormones and subjected to 4-g and 8-g forces simulated in a centrifuge and 1-g in an adjacent stationary control. Isoflavonoid aglycones and their glycoside concentrations (daidzein, genistein, daidzin, 6″-O-malonyl-7-O-glucosyl daidzein, genistin, 6″-O-malonyl-7-O-glucosyl genistein) were determined in the resulting tissues. Although gravity had no significant impact on callus growth, increasing gravity reduced isoflavonoid accumulation in three out of the four phytohormone-supplemented culture media. The ratio of the auxin naphthalene acetic acid (NAA) to the cytokinin benzylaminopurine (BAP) was found to have profound effect on both callus growth and isoflavonoid accumulation. The cytokinin BAP promoted callus tissue growth, but reduced callus isoflavonoid suggesting the isoflavonoid accumulation was not keeping pace with the cell growth in the elevated concentration of BAP. On the other hand, NAA had little or no effect on callus growth, but greatly enhanced isoflavonoid accumulation. Interactive effects of gravity and hormone on isoflavonoid accumulation were evident and its implication to the mechanism by which gravity exerts the effect on plant secondary metabolites is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, J., Bisbee, P.A., Darnell, R.L., Kuang, A., Levine, L.H., Musgrave, M.E., Van Loon, J.J.W.A.: Gravity control of growth form in Brassica rapa and Arabidopsis thaliana (Brassicaceae): consequences for secondary metabolism. Am. J. Bot. 96(3), 652–660 (2009)

    Article  Google Scholar 

  • Arias-Castro, C., Seragg, A.H., Rodriguez-Mendiola, M.A.: The effect of cultural conditions on the accumulation of formononetin by suspension cultures of Glycyrrhiza glabra. Plant Cell, Tissue Organ Cult. 34, 63–70 (1993)

    Article  Google Scholar 

  • Atkinson, C., Warren, R.M., Sala, E., Dowsett, M., Dunning, A.M., Healey, C.S., Runswick, S., Day, N.E., Bingham, S.A.: Red-clover-derived isoflavones and mammographic breast density: a double-blind, randomized, placebo-controlled trial [ISRCTN42940165]. Breast Cancer Res. 6, R170–R179 (2004)

    Article  Google Scholar 

  • Cassidy, A., Bingham, S., Setchell, K.: Biological effects of isoflavones in young women: importance of the chemical composition of soyabean products. Br. J. Nutr. 74, 587–601 (1995)

    Article  Google Scholar 

  • Castellanos, I., Espinosa-Garcìa, F.J.: Plant secondary metabolite diversity as a resistance trait against insects: a test with Sitophilus granarius (Coleoptera: Curculionidae) and seed secondary metabolites. Biochem. Syst. Ecol. 25, 591–602 (1997)

    Article  Google Scholar 

  • Cushnie, T.P.T., Lamb, A.J.: Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26, 343–356 (2005)

    Article  Google Scholar 

  • Darnell, R.D., Levine, L.H., Bisbee, P.A., Allen, J., Musgrave, M.E.: Glucosinolate production in hypergravity in Brassica rapa. Gravit. Space Biol. 21, 33 (2007)

    Google Scholar 

  • Deikman, J., Hammer, P.E.: Induction of anthocyanin accumulation by cytokinins in Arabidopsis thaliana. Plant Physiol. 108, 47–57 (1995)

    Google Scholar 

  • Eberhardt, T.L., Bernards, M., He, L., Davin, L.B., Wooden, J.B., Lewis N.G.: Lignification in cell suspension cultures of Pinus taeda: in situ characterization of gymnosperm lignin. J. Biolog. Chem. 268(28), 21088–21096 (1993)

    Google Scholar 

  • Gatchalian-Yee, M., Arimura, Y., Ochiai, E., Yamada, K., Sugano, M.: Soybean protein lowers serum cholesterol levels in hamsters: effect of debittered undigested fraction. Nutrition 13, 633–639 (1997)

    Article  Google Scholar 

  • Girod, P.-A., Zryd, J.-P.: Secondary metabolism in cultured red beet (Beta vulgaris L.) cells: differential regulation of betaxanthin and betacyanin biosynthesis. Plant Cell, Tissue Organ Cult. 25, 1–12 (1991)

    Article  Google Scholar 

  • Hammerschmidt, R.: Secondary metabolites and resistance: more evidence for a classical defense. Physiol. Mol. Plant Pathol. 65, 169–170 (2004)

    Article  Google Scholar 

  • Havsteen, B.H.: The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 96, 67–202 (2002)

    Article  Google Scholar 

  • Kessler, D., Baldwin, I.T.: Making sense of nectar scents: the effects of nectar secondary metabolites on floral visitors of Nicotiana attenuata. Plant J. 49, 840–854 (2007)

    Article  Google Scholar 

  • Levine, L.H., Levine, H.G., Stryjewski, E.C., Prima, V., Piastuch, W.C.: Effect of spaceflight on isoflavonoid accumulation in etiolated soybean seedlings. J. Gravit. Physiol. 8, 21–27 (2001)

    Google Scholar 

  • Lewis, D.R., Ramirez, M., Miller, N.D., Vallabhaneni, P., Ray, W.K., Helm, R.F., Winkel, B.S., Muday, G.K.: Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks. Plant Physiol. 156, 144–164 (2011)

    Article  Google Scholar 

  • Li, B.Q., Fu, T., Dongyan, Y., Mikovits, J.A., Ruscetti, F.W., Wang, J.M.: Flavonoid Baicalin inhibits HIV-1 infection at the level of viral entry. Biochem. Biophys. Res. Commun. 276, 534–538 (2000)

    Article  Google Scholar 

  • Medina, F.J., Herranz, R.: Microgravity environment uncouples cell growth and cell proliferation in root meristematic cells: the mediator role of auxin. Plant Signal Behav. 5, 176–179 (2010)

    Article  Google Scholar 

  • Miller, C.O.: Modification of the cytokinin promotion of deoxyisoflavone synthesis in soybean tissue. Plant Physiol. 49, 310–313 (1972)

    Article  Google Scholar 

  • Morton, M.S., Chan, P.S., Cheng, C., Blacklock, N., Matos-Ferreira, A., Abranches-Monteiro, L., Correia, R., Lloyd, S., Griffiths, K.: Lignans and isoflavonoids in plasma and prostatic fluid in men: samples from Portugal, Hong Kong, and the United Kingdom. Prostate 32, 122–128 (1997)

    Article  Google Scholar 

  • Musgrave, M.E., Kuang, A., Tuominen, L.K., Levine, L.H., Morrow, R.C.: Seed storage reserves and glucosinolates in Brassica rapa L. grown on the international space station. J. Am. Soc. Hortic. Sci. 130, 848–856 (2005)

    Google Scholar 

  • Salisbury, F.B., Gillespie, L., Rorabaugh, P.: Gravitropism in higher plant shoots. V. Changing sensitivity to auxin. Plant Physiol. 88, 1186–1194 (1988)

    Article  Google Scholar 

  • Shinde, A.N., Malpathak, N., Fulzele, D.P.: Determination of isoflavone content and antioxidant activity in Psoralea corylifolia L. callus cultures. Food Chem. 118, 128–132 (2010)

    Article  Google Scholar 

  • Shirley, B.W.: Flavonoid biosynthesis: ‘new’ functions for an ‘old’ pathway. Trends Plant Sci. 1, 377–382 (1996)

    Google Scholar 

  • Tamaoki, D., Karahara, I., Nishiuchi, T., Wakasugi, T., Yamada, K., Kamisaka, S.: Involvement of auxin dynamics in hypergravity-induced promotion of lignin-related gene expression in Arabidopsis inflorescence stems. J. Exp. Bot. 62, 5463–5469 (2011)

    Article  Google Scholar 

  • Thanonkeo, S., Panichajakul, S.: Production of isoflavones, daidzein and genistein in callus cultures of Pueraria candollei wall. ex benth. var. mirifica. Songklanakarin J. Sci. Technol. 28, 45–53 (2006)

    Google Scholar 

  • Tuominen, L.K., Levine, L.H., Musgrave, M.E.: Plant secondary metabolism in altered gravity. Methods Mol. Biol. 547, 373–386 (2009)

    Article  Google Scholar 

  • Ueda, J., Miyamoto, K., Yuda, T., Hoshino, T., Fujii, S., Mukai, C., Kamigaichi, S., Aizawa, S., Yoshizaki, I., Shimazu, T., Fukui, K.: Growth and development, and auxin polar transport in higher plants under microgravity conditions in space: BRIC-AUX on STS-95 space experiment. J. Plant Res. 112, 487–492 (1999)

    Article  Google Scholar 

  • Ueda, J., Miyamoto, K., Yuda, T., Hoshino, T., et al.: STS-95 space experiment for plant growth and development, and auxin polar transport. Biol. Sci. Space 14(2), 47–57 (2000)

    Article  Google Scholar 

  • Young, L.M., Evans, M.L., Hertel, R.: Correlations between gravitropic curvature and auxin movement across gravistimulated roots of Zea mays. Plant Physiol. 92, 792–796 (1990)

    Article  Google Scholar 

  • Zhao, X., Zheng, G.-W., Niu, X.-M., Li, W.-Q., Wang, F.-S., Li, S.-H.: Terpenes from Eupatorium adenophorum and their allelopathic effects on Arabidopsis seeds germination. J. Agric. Food Chem. 57, 478–482 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanfang H. Levine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Downey, P.J., Levine, L.H., Musgrave, M.E. et al. Effect of Hypergravity and Phytohormones on Isoflavonoid Accumulation in Soybean (Glycine max. L.) Callus. Microgravity Sci. Technol. 25, 9–15 (2013). https://doi.org/10.1007/s12217-012-9322-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-012-9322-9

Keywords

Navigation