Advertisement

Microgravity Science and Technology

, Volume 24, Issue 6, pp 419–425 | Cite as

Space Research Program on Planarian Schmidtea Mediterranea’s Establishment of the Anterior-Posterior Axis in Altered Gravity Conditions

  • G. Auletta
  • T. Adell
  • I. Colagè
  • P. D’Ambrosio
  • E. Salò
Original Article

Abstract

Planarians of the species Schmidtea mediterranea are a well-established model for regeneration studies. In this paper, we first recall the morphological characters and the molecular mechanisms involved in the regeneration process, especially focussing on the Wnt pathway and the establishment of the antero-posterior axial polarity. Then, after an assessment of a space-experiment (run in 2006 on the Russian Segment of the International Space Station) on planarians of the species Girardia tigrina, we present our experimental program to ascertain the effects that altered-gravity conditions may have on regeneration processes in S. mediterrnea at the molecular and genetic level.

Keywords

Schmidtea mediterranea Regeneration Totipotent stem cells Wnt pathway Simulated micro- and hyper-gravity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abril, J.F., Cebrià, F., Rodríguez-Esteban, G., Horn, T., Fraguas, S., Calvo, B., Bartscherer, K., Saló, E.: Smed454 dataset: unravelling the transcriptome of Schmidtea mediterranea. BMC Genomics 11, 731 (2010)CrossRefGoogle Scholar
  2. Adamidi, C., Wang, Y., Gruen, D., Mastrobuoni, G., You, X., Tolle, D., Dodt, M., Mackowiak, S.D., Gogol-Doering, A., Oenal, P., Rybak, A., Ross, E., Sánchez Alvarado, A., Kempa, S., Dieterich, C., Rajewsky, N., Chen, W.: De novo assembly and validation of planaria transcriptome by massive parallel sequencing and shotgun proteomics. Genome Res. 21, 1193–1200 (2011)CrossRefGoogle Scholar
  3. Adell, T., Salò, E., Boutros, M., Bartscherer, K.: Smed-Evi/ Wntless is required for beta-catenin-dependent and -independent processes during planarian regeneration. Development 136, 905–910 (2009)CrossRefGoogle Scholar
  4. Adell, T., Cebrià, F., Saló, E.: Gradients in planarian regeneration and homeostasis. Cold Spring Harb. Perspect. Biol. 2, a000505 (2010)CrossRefGoogle Scholar
  5. Adoutte, A., Balavoine, G., Lartillot, N., Lespinet, O., Prud’homme, B., de Rosa, R.: The new animal phylogeny: reliability and implications. Proc. Natl. Acad. Sci. USA 97, 4453–4456 (2000)CrossRefGoogle Scholar
  6. Almuedo-Castillo, M., Saló, E., Adell, T.: Dishevelled is essential for neural connectivity and planar cell polarity in planarians. Proc. Natl. Acad. Sci. USA 108, 2813–2818 (2011)CrossRefGoogle Scholar
  7. Alvarado, A.S., Kang, H.: Multicellularity, stem cells, and the neoblasts of the planarian Schmidtea mediterranea. Exp. Cell Res. 306, 299–308 (2005)CrossRefGoogle Scholar
  8. Alvarado, A.S., Newmark, P.A.: Double-stranded rna specifically disrupts gene expression during planarian regeneration. Proc. Natl. Acad. Sci. USA 96, 5049–5054 (1999)CrossRefGoogle Scholar
  9. Baguñà, J.: Mitosis in the intact and regenerating planarian Dugesia mediterranea n. sp. I. Mitotic studies during growth, feeding and starvation. J. Exp. Zool. 195, 65–80 (1976)CrossRefGoogle Scholar
  10. Baguñà, J., Saló, E., Auladell, C.: Regeneration and pattern formation in planarians III. Evidence that neoblasts are totipotent stem cells and the source of blastema cells. Development 107, 77–86 (1989)Google Scholar
  11. Bayascas, J.R., Castello, E., Saló, E.: Platyhelminthes have a Hox code differentially activated during regeneration, with genes closely related to those of spiralian protostomes. Dev. Genes Evol. 208, 467–473 (1998)CrossRefGoogle Scholar
  12. Chai, G., Ma, C., Bao, K., Zheng, L., Wang, X., Sun, Z., Salò, E., Adell, T., Wu, W.: Complete functional segregation of planarian β-catenin-1 and -2 in mediating wnt signaling and cell adhesion”, JBC Papers, published on line on May 29: M110.113662 (2010)Google Scholar
  13. Dubois, F.: Contribution á l’etude de la migration des cellules de règènèration chez les planaires dulcicoles. Bull. Biol. Fr. Belg. 83, 213–283 (1949)Google Scholar
  14. Friedlander, M.R., Adamidi, C., Han, T., Lebedeva, S., Isenbarger, T.A., Hirst, M., et al.: High-resolution profilingand discovery of planarian small RNAs. Proc. Natl. Acad. Sci. USA 106, 11546–11551 (2009)CrossRefGoogle Scholar
  15. Gonzalez-Estevez, C., Arseni, V., Thambyrajah, R.S., Felix, D.A., Aboobaker, A.A.: Diverse miRNA spatial expression patterns suggest important roles in homeostasis and regeneration in planarians. Int. J. Dev. Biol. 53, 493–505 (2009)CrossRefGoogle Scholar
  16. Goodrich, L.V., Strutt, D.: Principles of planar polarity in animal development. Development 138, 1877–1892 (2011)CrossRefGoogle Scholar
  17. Gordon, M.D., Nusse, R.: Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J. Biol. Chem. 281, 22429–22433 (2006)CrossRefGoogle Scholar
  18. Gorgiladze, G.I.: Regenerative capacity of the planarian Girardia tigrina and the snail Helix lucorum exposed to microgravity during an orbital flight on board the International Space Station. Doklady Biol. Sci. 421, 244–247 (2008)CrossRefGoogle Scholar
  19. Gurley, K.A., Rink, J.C., Alvarado, A.S.: β-catenin defines head versus tail identity during planarian regeneration and homeostasis. Science 319, 323–327 (2008)CrossRefGoogle Scholar
  20. Gurley, K.A., Elliott, S.A., Simakov, O., Schmidt, H.A., Holstein, T.W., Sánchez Alvarado, A.: Expression of secreted Wnt pathway components reveals unexpected complexity of the planarian amputation response. Dev. Biol. 347, 24–39 (2010)CrossRefGoogle Scholar
  21. Handberg-Thorsager, M., Fernandez, E., Saló E.: Stem cells and regeneration in planarians. Front. Biosci. 13, 6374–6394 (2008)CrossRefGoogle Scholar
  22. Ibañes, M., Izpisúa-Belmonte, C.: Theoretical and experimental approaches to understand morphogen gradients. Mol. Syst. Biol. 4, 176 (2008)CrossRefGoogle Scholar
  23. Iglesias, M., Gomez-Skarmeta, J.L., Saló, E., Adell, T.: Silencing of Smed-β -catenin1 generates radial-like hypercephalized planarians. Development 135, 1215–1221 (2008)CrossRefGoogle Scholar
  24. Iglesias, M., Aboobaker, A., Saló E.: Early planarian brain formation is independent of regenerative polarity mediated by the Wnt/bcatenin pathway. Dev. Biol. 358, 68–78 (2011)CrossRefGoogle Scholar
  25. Lender, T., Gabriel, A: Neoblasts labelled with tritiated uridine migrate and construct the regeneration blastema in fresh-water planaria. C R Hebd Seances Acad. Sci. 260, 4095–4097 (1965)Google Scholar
  26. Mikels, A.J., Nusse, R.: Wnts as ligands: processing, secretion and reception. Oncogene 25, 7461–7468 (2006)CrossRefGoogle Scholar
  27. Morgan, T.H.: Experimental studies of the regeneration of Planaria maculata. Arch. Entwicklungsmech. Org. 7, 364–397 (1898)CrossRefGoogle Scholar
  28. Newmark, P.A., Alvarado, A.S.: Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev. Biol. 220, 142–153 (2000)CrossRefGoogle Scholar
  29. Nogi, T., Watanabe, K.: Position-specific and non-colinear expression of the planarian posterior (Abdominal-B-like) gene. Dev. Growth Differ. 43, 177–184 (2001)CrossRefGoogle Scholar
  30. Orii, H., Kato, K., Umesono, Y., Sakurai, T., Agata, K., et al: The planarian HOM/HOX Homeobox genes (Plox) expressed along the anteroposterior axis. Dev. Biol. 210, 456–468 (1999)CrossRefGoogle Scholar
  31. Petersen, C.P., Reddien, P.W.: Smed-β-catenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science 319, 327–330 (2008)CrossRefGoogle Scholar
  32. Pineda, D., Gonzalez, J., Callaerts, P., Ikeo, K., Gehring, W.J., Salò, E.: Searching for the prototypic eye genetic network: Sine oculis is essential for eye regeneration in planarians. Proc. Natl. Acad. Sci. USA 97, 4525–4529 (2000)CrossRefGoogle Scholar
  33. Qin, Y.F., Fang, H.M., Tian, Q.N., Bao, Z.X., Lu, P., Zhao, J.M., Mai, J., Zhu, Z.Y., Shu, L.L., Zhao, L., Chen, S.J., Liang, F., Zhang, Y.Z., Zhang, S.T.: Transcriptome profiling and digital gene expression by deep-sequencing in normal/ regenerative tissues of planarian Dugesia japonica. Genomics 97, 364–371 (2011)CrossRefGoogle Scholar
  34. Robb, S.M., Ross, E., Sánchez Alvarado, A.: SmedGD: the Schmidtea mediterranea genome database. Nucleic Acids Res. 36(Database issue), D599–D606 (2008)Google Scholar
  35. Romero, R., Baguñà, J.: Quantitative analysis of cell types during growth, degrowth and regeneration in the planarians Dugesia mediterranea and Dugesia tigrina. Hydrobiologia 84, 181–194 (1981)CrossRefGoogle Scholar
  36. Saló, E.: The power of regeneration and the stem-cell kingdom: freshwater planarians (Platyhelminthes). Bioessays 28, 546–559 (2006)CrossRefGoogle Scholar
  37. Saló, E., Baguñà, J.: Cell movement in intact and regenerating planarians. Quantitation using chromosomal, nuclear and cytoplasmic markers. J. Embryol. Exp. Morphol. 89, 57–70 (1985)Google Scholar
  38. Saló, E., Baguñà, J.: Regeneration in planarians and other worms: new findings, new tools, and new perspectives. J. Exp. Zool. 292, 528–539 (2002)CrossRefGoogle Scholar
  39. Sandmann, T., Vogg, M.C., Owlarn, S., Boutros, M., Bartscherer, K.: The head-regeneration transcriptome of the planarian Schmidtea mediterranea. Genome Biol. 12, R76 (2011)CrossRefGoogle Scholar
  40. Tatcher, E.J., Patton, J.G.: Small RNAs have a big impact on regeneration. RNA Biol. 14, 333–338 (2010)CrossRefGoogle Scholar
  41. Wagner, D.E., Wang, I.E., Reddien, P.W.: Clonogenic neoblasts are pluripotent adul stem cells that underlie planarian regeneration. Science 332, 811–816 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • G. Auletta
    • 1
    • 2
  • T. Adell
    • 3
  • I. Colagè
    • 1
  • P. D’Ambrosio
    • 1
  • E. Salò
    • 3
  1. 1.Pontifical Gregorian UniversityRomeItaly
  2. 2.University of CassinoCassinoItaly
  3. 3.Department of GeneticsUniversity of BarcelonaBarcelonaSpain

Personalised recommendations