Skip to main content
Log in

The Use of Electric Force as a Replacement of Buoyancy in Two-phase Flow

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

When an electrostatic field is applied to a medium, an electric force arises, originated by polarization and by the possible presence of free charge. If the medium is a two-phase fluid, this force drives the vapor (of lower dielectric permittivity) towards the zone of weaker electric field, giving the opportunity of separating phases and enhancing boiling heat transfer in microgravity conditions, where buoyancy is lacking. Electric force is also responsible for bubble deformation. In this paper, after a comprehensive description of electro-hydro-dynamics (EHD) mechanisms in a two-phase fluid, some relevant literature data about EHD-induced phase separation are reported, confirming the effectiveness of the technique. The electric force on a growing and rising bubble is then evaluated numerically in some simple cases, with a fem technique. Finally, original experiments on gas bubble detachment are analyzed in the attempt to enucleate the role of different mechanisms contributing to EHD enhancement. In particular, it is stressed that the role of electric forces in altering bubble shape and increasing bubble internal pressure seems to be the most significant in promoting bubble detachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, P.H.G., Karayiannis, T.: Electrohydrodynamics enhancement of heat transfer and fluid flow. Heat Recovery Syst. CHP 5, 389–423 (1995)

    Article  Google Scholar 

  • Bashforth, F., Adams, J.C.: An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and Measured Forms of Drops of Fluid. Cambridge Univ. Press. (1893)

  • Bochirol, L., Bonjour, E., Weil, L.: Etude de l’action de champs électriques sur les transferts de chaleur dans les liquides bouillants. C.R. Hebd. Seances Acad. Sci. 250, 76–78 (1960)

    Google Scholar 

  • Bonjour, E., Verdier, J., Weil, L.: Improvement of heat exchanges in boiling liquids under the influence of an electric field. AIChE-ASME 5th Nat. Conference, Houston, USA (1962)

  • Castellanos, A.: Basic concepts and equations in electrohydrodynamics. Electrohydrodinamics. International Centre for Mechanical Sciences Course and Lecture notes 380. Springer (1998)

  • Cosentino, A., Di Marco, P., Grassi, W., Memoli, G.: Detachment of nitrogen bubbles in various fluids: effects of electric field. In: 6th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, Matsushima, Miyagi, Japan (CD-ROM), paper 6-a-2, 1–7 (2005)

  • Di Marco, P., Grassi, W.: Saturated pool boiling enhancement by means of an electric field. J. Enhanced Heat Transfer 1, 99–114 (1993)

    Google Scholar 

  • Di Marco, P., Grassi, W., Memoli, G., Takamasa, T., Tomiyama, A., Hosokawa, S.: Influence of electric field on single gas-bubble growth and detachment in microgravity. Int. J. Multiph. Flow 29, 559–578 (2003)

    Article  MATH  Google Scholar 

  • Di Marco, P., Grassi, W.: Pool boiling in microgravity: old and recent results. Multiph. Sci. Technol. 19(2), 141–165 (2007)

    Article  Google Scholar 

  • Di Marco, P.: Bubble growth and detachment: current status and future prospects. In: Proc. HEAT 2008, Fifth International Conference on Transport Phenomena in Multiphase Systems, Bialystok, Poland, pp. 67–82 (2008)

  • Fröhlich, H.: The Theory of Dielectrics. Oxford University Press (1958)

  • Gerlach, D., Bishwas, G., Durst, F., Kolobaric, V.: Quasi-static bubble formation on submerged orifices. Int. J. Heat Mass Transfer 48, 425–438 (2005)

    Article  Google Scholar 

  • Gonzalez, H., McCluskey, F.M., Castellanos, A., Barrero, A.: Stabilization of dielectric liquid bridges by electric fields in the absence of gravity. J. Fluid Mech. 206, 545–561 (1989)

    Article  MATH  Google Scholar 

  • Jones, T.B., Bliss, G.W.: Bubble dielectrophoresis. J. Appl. Phys. 48(4), 1412–1417 (1977)

    Article  Google Scholar 

  • Kirkwood, J.G.: The dielectric polarization of polar liquids. J. Chem. Phys. 7(10), 911–919 (1939)

    Article  Google Scholar 

  • Landau, L.D., Lifšitz, E.M.: Electrodynamics of Continuous Media, 2nd edn. Pergamon, New York (1984)

    Google Scholar 

  • Melcher, J.R., Taylor, G.I.: Electrohydrodynamics: a review of the role of interfacial shear stresses. Ann. Rev. Fluid Mech. 1, 111–146 (1969)

    Article  Google Scholar 

  • Panofsky, W.K.H, Phillips, M.: Classical Electricity and Magnetism. Addison-Wesley, Reading (1962)

    MATH  Google Scholar 

  • Panton, R.L.: Incompressible Flow, 3rd edn. Wiley, New York, ch.23 (2005)

    Google Scholar 

  • Pohl, H.A.: Some effects of non-uniform fields on dielectrics. J. Appl. Phys. 29, 1182–1189 (1958)

    Article  Google Scholar 

  • Lord Rayleigh: On the equilibrium of liquid conducting masses charged with electricity. Phil. Mag. 14, 184–186 (1882)

    Google Scholar 

  • Ribeiro, A.P.C., Nieto de Castro, C.A.: Dielectric properties of liquid refrigerants: facts and trends. Int. J. Refrigerat. 34, 393–401 (2011)

    Article  Google Scholar 

  • Saville, D.A.: Electrohydrodynamics: the Taylor-Melcher leaky dielectric model. Ann. Rev. Fluid Mech. 29, 27–64 (1997)

    Article  MathSciNet  Google Scholar 

  • Snyder, T.J., Chung, J.N.: Terrestrial and microgravity boiling heat transfer in a dielectrophoretic force field. Int. J. Heat Mass Transfer 43, 1547–1562 (2000)

    Article  Google Scholar 

  • Snyder, T.J., Schneider, J.B., Chung, J.N.: Dielectrophoresis with application to boiling heat transfer in microgravity – II. Experimental investigation. J. Appl. Phys. 98(7) 4084–4090 (2001)

    Article  Google Scholar 

  • Stratton, J.A.: Electromagnetic Theory. Mc Graw Hill (1941)

  • Taylor, G.: Disintegration of water droplets in an electric field. Proc. R. Soc. A 280, 383–397 (1964)

    Article  MATH  Google Scholar 

  • Taylor, G.: Studies in electrohydrodynamics – I. The circulation produced in a drop by electric field. Proc. R. Soc. A 291, 159–166 (1966)

    Article  Google Scholar 

  • Zahn, W.: Die elektrostriktion in dipolflussigkeiten. Zeit. Phys. 166, 275–288 (1962)

    Article  Google Scholar 

  • Zaghdoudi, M.C., Lallemand, M.: Study of the behavior of a bubble in an electric field: steady shape and local fluid motion. Int. J. Therm. Sci. 39, 39–52 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Di Marco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Marco, P. The Use of Electric Force as a Replacement of Buoyancy in Two-phase Flow. Microgravity Sci. Technol. 24, 215–228 (2012). https://doi.org/10.1007/s12217-012-9312-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-012-9312-y

Keywords

Navigation