Skip to main content
Log in

Centrifuges and Their Application for Biological Experiments in Space

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The need for an in-orbit 1×g control originated from the fact that Space radiation or other environmental factors of Space flight could not be excluded as cause for the effects on biological systems that were mainly interpreted as effects of the weightlessness environment. Indeed, in many experiments the 1×g reference centrifuge on board revealed the same data as the 1×g controls on ground, proving the lack of gravity was causing the results. In other cases, the reference centrifuge data were intermediate or clearly different to the ground data which was either due to interrupted 1×g conditions on board or to other, sometimes not well understood factors. This triggered also the development of sophisticated hardware allowing the start, i.e. the transition from 1×g to 0×g, or the termination of the experiment without stopping the centrifuge. Recently developed facilities provide also a complete life support system on the centrifuge rotor. Besides the in-flight 1×g control, acceleration experiments required a centrifuge for determination of threshold values in orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anken, R.H., Hilbig, R.: Determination of the threshold of gravity for inducing kinetosis in fish: a drop-tower experiment. Microgravity Sci. Technol. 15(2), 52–57 (2004)

    Article  Google Scholar 

  • Briarty, L.G.: Biology in Microgravity. A guide for experimenters. ESA TM-02, Kaldeich, B. (ed.). ESA Publications Division, Noordwijk, The Netherlands (1989)

    Google Scholar 

  • Brillouet, C., Brinckmann, E.: Biorack facility performance and experiment operations on three Spacehab Shuttle-to-Mir missions. In: Perry, M. (ed.) Biorack on Spacehab. ESA SP-1222. ESA Publications Division, Noordwijk, The Netherlands (1999)

    Google Scholar 

  • Brinckmann, E.: New facilities and instruments for developmental biology research in Space. In: Marthy, H.-J. (ed.) Developmental Biology Research in Space, pp. 253–280. Advances in Space Biology and Medicine, vol. 9. Elsevier, Amsterdam (2003)

    Google Scholar 

  • Brinckmann, E.: Biolab, EPU and EMCS for cell culture experiments on the ISS. J. Gravitational Physiol. 11, 67–74 (2004)

    Google Scholar 

  • Cogoli, A., Friedrich, U., Mesland, D., Demets, R.: Life sciences experiments performed on sounding rockets (1985–1994). ESA SP-1206, Wilson, A. (ed.). ESA Publications Division, Noordwijk, The Netherlands (1997)

    Google Scholar 

  • Cogoli, A., Cogoli-Greuter, M.: Cells of the immune system in Space (lymphocytes). In: Brinckmann, E. (ed.) Biology in Space and Life on Earth, pp. 193–222. Wiley-VCH, Weinheim (2007)

    Chapter  Google Scholar 

  • Demets, R., Jansen, W.H., Simeone, E.: Biological experiments on the BION-10 satellite. ESA SP-1208, Perry, M. (ed.). ESA Publications Division, Noordwijk, The Netherlands (2002)

    Google Scholar 

  • Driss-Ecole, D., Legué, V., Carnero-Diaz, E., Perbal, G.: Gravisensitivity and automorphogenesis of lentil seedling roots grown on board the International Space Station. Physiol. Plant. 134, 191–201 (2008). doi:10.1111/j.1399-3054.2008.01121.x

    Article  Google Scholar 

  • ESA: Kubik. http://esamultimedia.esa.int/docs/hsf_research/Kubik_description.pdf. Accessed 8 October 2011

  • Friedrich, U.L.D., Joop, O., Pütz, C., Willich, G.: The slow rotating centrifuge microscope NIZEMI — A versatile instrument for terrestrial hypergravity and space microgravity research in biology and materials science. J. Biotechnol. 47(2–3), 225–238 (1996)

    Article  Google Scholar 

  • Grillet, L.: IBIS. http://cpge.lycee-marceau.com/IMG/pdf/IBIS.pdf. Accessed 25 September 2011

  • Häder, D.-P., Hemmersbach, R.: Graviperception and graviorientation in flagellates. Planta 203, S7–S10 (1997)

    Article  Google Scholar 

  • Heathcote, D.G., Chapman, D.K., Brown, A.H., Lewis, R.F.: The Gravitational Plant Physiology Facility - description of equipment developed for biological research in Spacelab. Microgravity Sci. Technol. 7(3), 270–275 (1994)

    Google Scholar 

  • JAXA: Cell Biology Experiment Facility, CBEF. http://kibo.jaxa.jp/en/experiment/pm/cbef/ (2007). Accessed 23 September 2011

  • Kiss, J.Z., Edelmann, R.E., Wood, P.C.: Gravitropism of hypocotyls of wild-type and starch-deficient Arabidopsis seedlings in spaceflight studies. Planta 209, 96–103 (1999)

    Article  Google Scholar 

  • Lomax, T.: ISS Centrifuge Accommodation Module (CAM) and contents. Presentation to the Space Station Utilization Advisory Subcommittee (SSUAS), 29 July 2003. http://spaceresearch.nasa.gov/docs/ssuas/lomax_8-2003.pdf. Accessed 8 October 2011

  • Mergenhagen, D., Mergenhagen, E.: The biological clock of Chlamydomonas reinhardii in space. In: Longdon, N., David, V. (eds.) Biorack on Spacelab D1, pp. 75–86. ESA SP-1091. ESA Publications Division, Noordwijk, The Netherlands (1987)

    Google Scholar 

  • Mesland, D.A.M., Soons, A.F.L.: The Biorack. In: Space biology with emphasis on cell and developmental biology, p. 11. ESA SP-206. ESA Publications Division, Noordwijk, The Netherlands (1983)

    Google Scholar 

  • NASA: Low-Gravity Centrifuge. http://lsda.jsc.nasa.gov/scripts/hardware/hardw.cfm?hardware_id=67 (2011). Accessed 9 October 2011

  • Neubert, J., Schatz, A., Briegleb, W., Bromeis, B., Linke-Hommes, A., Bäumer, K.: Gravity dependence of developmental processes in aquatic vertebrates. In: Sahm, P.R., Keller, M.H., Schiewe, B. (eds.) Scientific results of the German Spacelab mission D-2, pp. 612–620. WPF c/o DLR Köln, Germany (1995)

    Google Scholar 

  • Perbal G., Julianus, P., Driss-Ecole, D.: Gravisensitivity of lentil seedling roots grown in space. In: Perry, M. (ed.) Biorack on Spacehab, pp. 251–262. ESA SP-1222. ESA Publications Division, Noordwijk, The Netherlands (1999)

    Google Scholar 

  • Perry, M. (ed.) Biorack on Spacehab. ESA SP-1222. ESA Publications Division, Noordwijk, The Netherlands (1999)

    Google Scholar 

  • Planel, H., Richoilley, G., Caratero, C., Tixador, R., Caratero, A., Gasset, G.: Effects of angular speed in responses of Paramecium tetraurelia to hypergravity. Appl. Microgravity Technol. 3, 107–109 (1990)

    Google Scholar 

  • Pross, H.D., Casares, A., Kiefer, J.: Repair of radiation damage in yeast under microgravity conditions in space. In: Perry, M. (ed.) Biorack on Spacehab, pp. 195–202. ESA SP-1222. ESA Publications Division, Noordwijk, The Netherlands (1999)

    Google Scholar 

  • Rijken, P.J., de Groot, R.P., Kruijer, W., de Laat, S.W., Verkleij, A.J., Boonstra, J.: Identification of specific gravity sensitive signal transduction pathways in human A431 carcinoma cells. Adv. Space Res. 12(1), 145–152 (1992)

    Article  Google Scholar 

  • Schuber, M., Seibt, D.: BIOLABOR ground support program for the Spacelab mission D-2. In: Sahm, P.R., Keller, M.H., Schiewe, B. (eds.) Scientific results of the German Spacelab mission D-2, pp. 805–809. WPF c/o DLR Köln, Germany (1995)

    Google Scholar 

  • Solheim, B.G.B., Kittang, A.-I., Iversen, T.-H., Johnsson, A.: Preparatory experiments for long-term observation of Arabidopsis circumnutations in microgravity. Acta Astronaut. 59, 46–53 (2006)

    Article  Google Scholar 

  • Spangenberg, D.B.: Effect of micro-g on Aurelia ephyra behaviour and development. Final Report: NAG-2-767. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19970012879_1997021507.pdf (1997). Accessed 9 October 2011

  • van Loon, J.J.W.A., Mastenbroek, O., Lemcke, C.: The Biopack Facility. 7th European Life Sciences meeting ’Life Odyssey’, Maastricht, The Netherlands, 29 May_ 2 June 1999. Updated paper: http://www.descsite.nl/Biopack_us.htm. Accessed 8 October 2011

  • van Loon, J.J.W.A., Folgering, E.H.T.E., Bouten, C.V.C., Veldhuijzen, J.P., Smit, T.H.: Inertial shear forces and the use of centrifuges in gravity research. What is the proper control? J. Biomech. Eng. 125(3), 342–347 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enno Brinckmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brinckmann, E. Centrifuges and Their Application for Biological Experiments in Space. Microgravity Sci. Technol. 24, 365–372 (2012). https://doi.org/10.1007/s12217-012-9300-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-012-9300-2

Keywords

Navigation