Skip to main content
Log in

Differential Gravity Induced Absorption Changes in Coleoptiles of Zea mays as measured with the Single Wavelength Space Discriminator (SWSD)

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Various spectroscopic experiments performed on the AIRBUS ZERO G in the years 2002 to 2011 clearly exhibited optical reflection/absorption changes as a result of gravitational changes (GIACs) in Arabidopsis, Phycomyces sporangiophores, avena or maize coleoptiles. Minute differential absorption/ reflection changes (Δ GIAC) between the upper and lower site of horizontally placed maize coleoptiles were detected at the gravisensing tip during flight parabolas in response to hyper- and microgravity. For this purpose we had developed a Single Wavelength Space Discriminator (SWSD) as based on the former Micro Dual Wavelength Spectrophotometer (MDWS). The SWSD allows to tilt and rotate the coleoptile and the sensing light fiber tips independently in all directions. Thus we were able to discriminate between asymmetrical/vertical, i.e. sensitive, and symmetrical/ horizontal, i.e. non-sensitive arrangement of the light fiber tips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anker, L.: Ortho-geotropism in shoots and coleoptiles. In: Ruhland, W. (ed.) Encyclopedia of Plant Physiology, pp. 103–152. Springer, Berlin Göttingen Heidelberg (1962)

    Google Scholar 

  • Behrens, H.M., Weisenseel, M.H., Sievers, A.: Rapid changes in the pattern of electric current around the root tip of Lepidium sativum L. following gravistimulation. Plant Physiol. 70, 1079–1083 (1982)

    Article  Google Scholar 

  • Behrens, H.M., Gradmann, D., Sievers, A.: Membrane-potential responses following gravistimulation in roots of Lepidium sativum L. Planta 163, 463–472 (1985)

    Article  Google Scholar 

  • Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Papanov, I., Friml, J., Heidstra, R., Aöda, M., Palme, K., Scheres, B.: The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433, 39–44 (2005)

    Article  Google Scholar 

  • Björkmann, T.: Perception of gravity by plants. Adv. Bot. Res. 15, 1–41 (1988)

    Article  Google Scholar 

  • Björkman, T., Leopold, A.C.: Effect of inhibitors of auxin transport and of calmodulin on a gravisensing-dependent current in maize roots. Plant Physiol. 84, 847–850 (1987)

    Article  Google Scholar 

  • Boonsirichai, K., Guan, C., Chen, R., Masson, P.H.: Root gravitropism: an experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants. Annu. Rev. Plant Biol. 53, 421–447 (2002)

    Article  Google Scholar 

  • Bräucker, R., Murakami, A., Ikegaya, K., Yoshimura, K., Takahashi, K., Machemer-Röhnisch, S., Machemer, H.: Relaxation and activation of graviresponses in Paramecium caudatum. J. Exp. Biol. 201, 2103–2113 (1998)

    Google Scholar 

  • Braun, M.: Gravitropism in tip-growing cells. Planta 203, 11–19 (1997)

    Article  Google Scholar 

  • Brauner, L.: Primäreffekte der Schwerkraft bei der geotropischen Reaktion. In: Ruhland, W. (ed.) Encyclopedia of Plant Physiology XVII/2, pp. 74–102. Springer, Berlin Göttingen Heidelberg (1962)

    Google Scholar 

  • Brown, A.H., Chapman, D.K., Johnsson, A., Heathcote, D.: Gravitropic responses of the Avena coleoptile in space and on clinostats. I. Gravitropic response thresholds. Physiol. Plant 95, 27–33 (1995)

    Article  Google Scholar 

  • Corrochano, L.M., Galland, P.: Photomorphogenesis and gravitropism in fungi. In: Kues, U., Fischer, R. (eds.) The Mycota I, Growth, Differentiation and Sexuality, pp. 231–257. Springer, Berlin Heidelberg (2006)

    Google Scholar 

  • Dennison, D.S.: Tropic responses of Phycomyces sporangiophores to gravitational and centrifugal stimuli. J. Gen. Physiol. 45, 23–38 (1961)

    Article  Google Scholar 

  • Dennison, D., Shropshire, W. Jr.: The gravireceptor of Phycomyces: its development following gravity exposure. J. Gen. Physiol. 84, 845–859 (1984)

    Article  Google Scholar 

  • Edelmann, H.G.: Ethylen perseption generates gravicompetence in gravi-incompetent leaves of rye seedlings. J. Exp. Bot. 375, 1825–1828 (2002)

    Article  Google Scholar 

  • Gradmann, H.: Die tropistischen Krümmungen als Auswirkungen eines gestörten Gleichgewichts. Jahrb. Wiss. Bot. 72, 513–610 (1930)

    Google Scholar 

  • Haberland, G.: Über die Statolithentheorie der Stärkekörner. Jahrb. Wiss. Bot. 20, 189–195 (1902)

    Google Scholar 

  • Hemmersbach-Krause, R., Briegleb, W., Häder, D.-P., Vogel, K., Klein, S., Mulisch, M.: Protozoa as model systems for the study of cellular responses to altered gravity conditions. Adv. Space Res. 14, 49–60 (1994)

    Article  Google Scholar 

  • Kern, V.D., Mendgen, K., Hock, B.: Flammulina as a model system for fungal graviresponses. Planta 203, 23–32 (1997)

    Article  Google Scholar 

  • Kiss, J.Z., Hertel, R., Sack, F.R.: Amyloplasts are necessary for full gravitropic sensitivity in root of Arabidopsis thaliana. Planta 177, 198–206 (1989)

    Article  Google Scholar 

  • Ma, Z., Hasenstein, K.H.: The onset of gravisensitivity in the embryonic root of flax. Plant Physiol. 140, 159–156 (2006)

    Article  Google Scholar 

  • Plieth, C., Trewawas, A.J.: Reorientation of seedlings in the earth’s gravitational field induces cytosolic calcium transients. Plant Physiol. 129, 786–796 (2002)

    Article  Google Scholar 

  • Rawitscher, F.: Der Geotropismus der Pflanzen. Gustav Fischer Verlag, Jena, pp. 110 and 309 (1932)

  • Sack, F.: Plastids and gravitropic sensing. Planta 203, 63–68 (1997)

    Article  Google Scholar 

  • Schmidt, W.: High performance micro-dual-wavelength-spectrophotometer (MDWS). J. Biochem. Biophys. Methods 58, 15–24 (2004a)

    Article  Google Scholar 

  • Schmidt, W.: Quickly changing acceleration forces (QCAFs), vibration analysis on the A300 ZERO-G. Microgravity Sci. Technol. XV/1, 42–48 (2004b)

    Article  Google Scholar 

  • Schmidt, W.: A mini-rapid-scan-spectrophotometer. J. Biochem. Biophys. Methods 58, 125–137 (2004c)

    Article  Google Scholar 

  • Schmidt, W.: Optical Spectroscopy in Life Sciences and Chemistry, An Introduction, pp. 369. Wiley-VCH (2005)

  • Schmidt, W.: Gravity-induced absorption changes in Phycomyces blakesleeanus during parabolic flights: first spectral approach in the visible. Protoplasma 229, 125–131 (2006)

    Article  Google Scholar 

  • Schmidt, W.: Advanced micro dual wavelength spectrophotometer (MDWS) for measuring minute optical changes in the millisecond time range. Microgravity Sci. Technol. XIX-1, 11–15 (2007)

    Article  Google Scholar 

  • Schmidt, W.: Gravity induced absorption changes in phycomyces blakesleanus and coleoptiles of zea mays as measured on the drop tower in Bremen (FRG). Microgravity Sci. Technol. 22, 79–85 (2010)

    Article  Google Scholar 

  • Schmidt, W.: Gravireception in phycomyces blakesleeanus and arabidopsis thaliana: hysteretic behaviour of primary reactions. Microgravity Sci. Technol. 23, 356–364 (2011)

    Article  Google Scholar 

  • Schmidt, W., Galland P.: Light-induced absorbance changes in Phycomyces: evidence for cryptochrome-associated flavosemiquinones. Planta 208, 274–282 (1999)

    Article  Google Scholar 

  • Schmidt, W., Galland P.: Gravity-induced absorbance changes in Phycomyces: a novel method for detecting primary reactions of gravitropism. Planta 210, 848–852 (2000)

    Article  Google Scholar 

  • Schmidt, W., Galland, G.: Optospectroscopic detection of primary reactions associated with the graviperception of Phycomyces: effects of micro- and hypergravity. Plant Physiol. 135, 183–192 (2004)

    Article  Google Scholar 

  • Schmidt, W., Galland, P., Senger, H., Furuya, M.: Further microscopic and microsspectrophotometric investigation of the Euglena g. photoreceptor. Planta 182, 375–381 (1990)

    Article  Google Scholar 

  • Scott, A.C., Allen, N.S.: Changes in cytosolic pH within Arabidopsis root columella can play a key role in the early signaling parthway for root gravitropism. Plant Physiol. 121, 1291–1298 (1999)

    Article  Google Scholar 

  • Shigematsu, H., Toko, K., Matsuno, T., Yamafuji, K.: Early gravi-electrical responses in bean epicotyls. Plant Physiol. 105, 875–880 (1994)

    Google Scholar 

  • Sievers, A., Sondag, C., Trebacz, K., Hejnowicz, Z.: Gravity induced changes in intracellular potentials in statocytes of cress roots. Planta 197, 392–398 (1995)

    Article  Google Scholar 

  • Wabnik, K., Govaerts, W., Friml, J., Kleine-Vehn, J.: Feedback models for polarized auxin transport: an emerging trend. Mol. Biosyst. 7(8):2352–2359, (Epub 2011)

    Article  Google Scholar 

  • Volkmann, D., Sievers, A.: Graviperception in multicellular organs. In: Haupt, W., Feinleib, M.E. (eds.) Encyclopedia of plant physiology, physiology of movements, vol. 7, pp. 573–600. Springer, Berlin, Heidelberg, New York (1979)

    Google Scholar 

  • Weisenseel, M.H., Meyer, A.J.: Bioelectricity, gravity and plants. Planta 203, 98–106 (1997)

    Article  Google Scholar 

  • Yoder, T.L., Zheng, H., Todd, P., Staehelin, L.A.: Amyloplast sedimentation dynamics in maize columella cells support a new model for gravity-sensing apparatus of roots. Plant Physiol. 125, 1045–1060 (2001)

    Article  Google Scholar 

  • Zheng, H.Q., Staehelin L.A.: Nodal endoplasmic reticulum, a specialized form of endoplasmic reticulum found in gravity-sensing root tip columella cells. Plant Physiol. 125, 252–265 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, W. Differential Gravity Induced Absorption Changes in Coleoptiles of Zea mays as measured with the Single Wavelength Space Discriminator (SWSD). Microgravity Sci. Technol. 24, 103–112 (2012). https://doi.org/10.1007/s12217-012-9299-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-012-9299-4

Keywords

Navigation