Abstract
Various spectroscopic experiments performed on the AIRBUS ZERO G in the years 2002 to 2011 clearly exhibited optical reflection/absorption changes as a result of gravitational changes (GIACs) in Arabidopsis, Phycomyces sporangiophores, avena or maize coleoptiles. Minute differential absorption/ reflection changes (Δ GIAC) between the upper and lower site of horizontally placed maize coleoptiles were detected at the gravisensing tip during flight parabolas in response to hyper- and microgravity. For this purpose we had developed a Single Wavelength Space Discriminator (SWSD) as based on the former Micro Dual Wavelength Spectrophotometer (MDWS). The SWSD allows to tilt and rotate the coleoptile and the sensing light fiber tips independently in all directions. Thus we were able to discriminate between asymmetrical/vertical, i.e. sensitive, and symmetrical/ horizontal, i.e. non-sensitive arrangement of the light fiber tips.
Similar content being viewed by others
References
Anker, L.: Ortho-geotropism in shoots and coleoptiles. In: Ruhland, W. (ed.) Encyclopedia of Plant Physiology, pp. 103–152. Springer, Berlin Göttingen Heidelberg (1962)
Behrens, H.M., Weisenseel, M.H., Sievers, A.: Rapid changes in the pattern of electric current around the root tip of Lepidium sativum L. following gravistimulation. Plant Physiol. 70, 1079–1083 (1982)
Behrens, H.M., Gradmann, D., Sievers, A.: Membrane-potential responses following gravistimulation in roots of Lepidium sativum L. Planta 163, 463–472 (1985)
Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Papanov, I., Friml, J., Heidstra, R., Aöda, M., Palme, K., Scheres, B.: The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433, 39–44 (2005)
Björkmann, T.: Perception of gravity by plants. Adv. Bot. Res. 15, 1–41 (1988)
Björkman, T., Leopold, A.C.: Effect of inhibitors of auxin transport and of calmodulin on a gravisensing-dependent current in maize roots. Plant Physiol. 84, 847–850 (1987)
Boonsirichai, K., Guan, C., Chen, R., Masson, P.H.: Root gravitropism: an experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants. Annu. Rev. Plant Biol. 53, 421–447 (2002)
Bräucker, R., Murakami, A., Ikegaya, K., Yoshimura, K., Takahashi, K., Machemer-Röhnisch, S., Machemer, H.: Relaxation and activation of graviresponses in Paramecium caudatum. J. Exp. Biol. 201, 2103–2113 (1998)
Braun, M.: Gravitropism in tip-growing cells. Planta 203, 11–19 (1997)
Brauner, L.: Primäreffekte der Schwerkraft bei der geotropischen Reaktion. In: Ruhland, W. (ed.) Encyclopedia of Plant Physiology XVII/2, pp. 74–102. Springer, Berlin Göttingen Heidelberg (1962)
Brown, A.H., Chapman, D.K., Johnsson, A., Heathcote, D.: Gravitropic responses of the Avena coleoptile in space and on clinostats. I. Gravitropic response thresholds. Physiol. Plant 95, 27–33 (1995)
Corrochano, L.M., Galland, P.: Photomorphogenesis and gravitropism in fungi. In: Kues, U., Fischer, R. (eds.) The Mycota I, Growth, Differentiation and Sexuality, pp. 231–257. Springer, Berlin Heidelberg (2006)
Dennison, D.S.: Tropic responses of Phycomyces sporangiophores to gravitational and centrifugal stimuli. J. Gen. Physiol. 45, 23–38 (1961)
Dennison, D., Shropshire, W. Jr.: The gravireceptor of Phycomyces: its development following gravity exposure. J. Gen. Physiol. 84, 845–859 (1984)
Edelmann, H.G.: Ethylen perseption generates gravicompetence in gravi-incompetent leaves of rye seedlings. J. Exp. Bot. 375, 1825–1828 (2002)
Gradmann, H.: Die tropistischen Krümmungen als Auswirkungen eines gestörten Gleichgewichts. Jahrb. Wiss. Bot. 72, 513–610 (1930)
Haberland, G.: Über die Statolithentheorie der Stärkekörner. Jahrb. Wiss. Bot. 20, 189–195 (1902)
Hemmersbach-Krause, R., Briegleb, W., Häder, D.-P., Vogel, K., Klein, S., Mulisch, M.: Protozoa as model systems for the study of cellular responses to altered gravity conditions. Adv. Space Res. 14, 49–60 (1994)
Kern, V.D., Mendgen, K., Hock, B.: Flammulina as a model system for fungal graviresponses. Planta 203, 23–32 (1997)
Kiss, J.Z., Hertel, R., Sack, F.R.: Amyloplasts are necessary for full gravitropic sensitivity in root of Arabidopsis thaliana. Planta 177, 198–206 (1989)
Ma, Z., Hasenstein, K.H.: The onset of gravisensitivity in the embryonic root of flax. Plant Physiol. 140, 159–156 (2006)
Plieth, C., Trewawas, A.J.: Reorientation of seedlings in the earth’s gravitational field induces cytosolic calcium transients. Plant Physiol. 129, 786–796 (2002)
Rawitscher, F.: Der Geotropismus der Pflanzen. Gustav Fischer Verlag, Jena, pp. 110 and 309 (1932)
Sack, F.: Plastids and gravitropic sensing. Planta 203, 63–68 (1997)
Schmidt, W.: High performance micro-dual-wavelength-spectrophotometer (MDWS). J. Biochem. Biophys. Methods 58, 15–24 (2004a)
Schmidt, W.: Quickly changing acceleration forces (QCAFs), vibration analysis on the A300 ZERO-G. Microgravity Sci. Technol. XV/1, 42–48 (2004b)
Schmidt, W.: A mini-rapid-scan-spectrophotometer. J. Biochem. Biophys. Methods 58, 125–137 (2004c)
Schmidt, W.: Optical Spectroscopy in Life Sciences and Chemistry, An Introduction, pp. 369. Wiley-VCH (2005)
Schmidt, W.: Gravity-induced absorption changes in Phycomyces blakesleeanus during parabolic flights: first spectral approach in the visible. Protoplasma 229, 125–131 (2006)
Schmidt, W.: Advanced micro dual wavelength spectrophotometer (MDWS) for measuring minute optical changes in the millisecond time range. Microgravity Sci. Technol. XIX-1, 11–15 (2007)
Schmidt, W.: Gravity induced absorption changes in phycomyces blakesleanus and coleoptiles of zea mays as measured on the drop tower in Bremen (FRG). Microgravity Sci. Technol. 22, 79–85 (2010)
Schmidt, W.: Gravireception in phycomyces blakesleeanus and arabidopsis thaliana: hysteretic behaviour of primary reactions. Microgravity Sci. Technol. 23, 356–364 (2011)
Schmidt, W., Galland P.: Light-induced absorbance changes in Phycomyces: evidence for cryptochrome-associated flavosemiquinones. Planta 208, 274–282 (1999)
Schmidt, W., Galland P.: Gravity-induced absorbance changes in Phycomyces: a novel method for detecting primary reactions of gravitropism. Planta 210, 848–852 (2000)
Schmidt, W., Galland, G.: Optospectroscopic detection of primary reactions associated with the graviperception of Phycomyces: effects of micro- and hypergravity. Plant Physiol. 135, 183–192 (2004)
Schmidt, W., Galland, P., Senger, H., Furuya, M.: Further microscopic and microsspectrophotometric investigation of the Euglena g. photoreceptor. Planta 182, 375–381 (1990)
Scott, A.C., Allen, N.S.: Changes in cytosolic pH within Arabidopsis root columella can play a key role in the early signaling parthway for root gravitropism. Plant Physiol. 121, 1291–1298 (1999)
Shigematsu, H., Toko, K., Matsuno, T., Yamafuji, K.: Early gravi-electrical responses in bean epicotyls. Plant Physiol. 105, 875–880 (1994)
Sievers, A., Sondag, C., Trebacz, K., Hejnowicz, Z.: Gravity induced changes in intracellular potentials in statocytes of cress roots. Planta 197, 392–398 (1995)
Wabnik, K., Govaerts, W., Friml, J., Kleine-Vehn, J.: Feedback models for polarized auxin transport: an emerging trend. Mol. Biosyst. 7(8):2352–2359, (Epub 2011)
Volkmann, D., Sievers, A.: Graviperception in multicellular organs. In: Haupt, W., Feinleib, M.E. (eds.) Encyclopedia of plant physiology, physiology of movements, vol. 7, pp. 573–600. Springer, Berlin, Heidelberg, New York (1979)
Weisenseel, M.H., Meyer, A.J.: Bioelectricity, gravity and plants. Planta 203, 98–106 (1997)
Yoder, T.L., Zheng, H., Todd, P., Staehelin, L.A.: Amyloplast sedimentation dynamics in maize columella cells support a new model for gravity-sensing apparatus of roots. Plant Physiol. 125, 1045–1060 (2001)
Zheng, H.Q., Staehelin L.A.: Nodal endoplasmic reticulum, a specialized form of endoplasmic reticulum found in gravity-sensing root tip columella cells. Plant Physiol. 125, 252–265 (2001)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schmidt, W. Differential Gravity Induced Absorption Changes in Coleoptiles of Zea mays as measured with the Single Wavelength Space Discriminator (SWSD). Microgravity Sci. Technol. 24, 103–112 (2012). https://doi.org/10.1007/s12217-012-9299-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12217-012-9299-4