Skip to main content
Log in

Vibration-Induced Attraction of a Particle Towards a Wall in Microgravity—The Mechanism of Attraction Force

  • Topical Issue Two-Phase Systems Italy
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The effects of small vibrations on a particle oscillating near a solid wall in a fluid cell, relevant to material processing such as crystal growth in space, have been investigated by three dimensional direct numerical simulations. Simulations have been conducted for a solid spherical particle suspended in a fluid cell filled with a fluid of 1 cSt viscosity, vibrating sinusoidally in a horizontal direction. The simulations revealed the existence of a vibration-induced force attracting the particle towards the nearest cell wall which varied with the cell vibration frequency. The mechanism for this attraction force as well as an example showing the effects of this force on the particle are presented in this paper. The predicted flow patterns around the particle unveiled an accelerated flow in the gap between the particle and the nearest wall as well as a pressure decrease in accordance with Bernoulli’s principle, which would result in the attraction force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basset, A.B.: A Treatise on Hydrodynamics, vol. 21, pp. 260–284. Deighton, Bell and Co Press, Cambridge, UK (1888)

    Google Scholar 

  • Boussinesq, J.: Sur la résistance qu’oppose un fluide indéfini en repos, sans pesanteur, au mouvement varié d’une sphère solide qu’il mouille sur toute sa surface, quand les vitesses restent bien continues et assez faibles pour que leurs carrés et produits soient négligeables. C. R. Acad. Sci. Paris 100, 935–937 (1885)

    Google Scholar 

  • Chayen, N.E., Snell, E.H., Helliwell, J.R., Zagalsky, P.F.: CCD video observation of microgravity crystallization: apocrustacyanin C 1. J. Cryst. Growth 171, 219–225 (1997)

    Article  Google Scholar 

  • Chelomey, V.N.: Paradoxes in mechanics caused by vibrations. Acta Astronaut. 11, 269–273 (1984)

    Article  Google Scholar 

  • Coimbra, C.F.M., Rangel, R.H.: Spherical particle motion in harmonic stokes flows. AIAA J. 39, 1673–1682 (2001)

    Article  Google Scholar 

  • Coimbra, C.F.M., L’Esperance, D., Lambert, R.A.: An experimental study on stationary history effects in high-frequency stokes flows. J. Fluid Mech. 504, 353–363 (2004)

    Article  MATH  Google Scholar 

  • Hassan, S., Kawaji, M.: Wall effects on vibration- induced particle motion in a fluid cell in space. AIAA J. 45, 2090–2092 (2007a)

    Article  Google Scholar 

  • Hassan, S., Kawaji, M.: Vibration-induced particle drift in a fluid cell under microgravity. Microgravity Sci. Technol. 19, 109–112 (2007b)

    Article  Google Scholar 

  • Hassan, S., Lyubimova, T.P., Lyubimov, D.V., Kawaji, M.: Motion of a sphere suspended in a vibrating liquid-filled container. J. Appl. Mech. 73, 72–78 (2006a)

    Article  MATH  Google Scholar 

  • Hassan, S., Lyubimova, T.P., Lyubimov, D.V., Kawaji, M.: The effects of vibrations on particle motion in a semi-infinite fluid cell. ASME J. Appl. Mech. 73, 610–621 (2006b)

    Article  MATH  Google Scholar 

  • Hassan, S., Kawaji, M., Lyubimova, T.P., Lyubimov, D.V.: Effects of vibrations on particle motion near a wall: existence of attraction force. Int. J. Multiphas. Flow 32, 1027–1054 (2006c)

    Article  Google Scholar 

  • Hinze, O.: Turbulence. McGraw–Hill, New York (1975)

    Google Scholar 

  • Hjelmfelt, A.T., Mockros, L.F.: Motion of discrete particles in turbulent fluid. Appl. Sci. Res. 16, 148–161 (1966)

    Article  Google Scholar 

  • Hu, H.H., Patankar, N.A., Zhu, M.Y.: Direct numerical simulations of fluid–solid systems using the arbitrary Lagrangian–Eulerian technique. J. Comput. Phys. 169, 427–462 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Jules, K., McPherson, K., Hrovat, K., Kelly, E., Reckart, T.: A status report on the characterization of the microgravity environment of the international space station. Acta Astronaut. 55, 335–364 (2004)

    Article  Google Scholar 

  • Kawaji, M., Gamache, O., Hwang, D.H., Ichikawa, N., Viola, J.P., Sygusch, J.: Investigation of Marangoni and natural convection during protein crystal growth. J. Cryst. Growth 258, 420–430 (2003)

    Article  Google Scholar 

  • Klotsa, D., Swift, M.R., Bowley, R.M., King, P.J.: Interaction of spheres in oscillatory fluid flows. Phys. Rev. E—Stat., Nonlinear, Soft Matter Phys. 76(5), 056314 (2007)

    Article  Google Scholar 

  • Knabe, W., Eilers, D.: Low-gravity environment in spacelab. Acta Astronaut. 9, 187–198 (1982)

    Article  Google Scholar 

  • L’Esperance, D., Coimbra, C.F.M., Trolinger, J.D.: Experimental verification of fractional history effects on the viscous dynamics of small spherical particles. Exp. Fluid. 38, 112–116 (2005)

    Article  Google Scholar 

  • Liang, R., Liang, D., Yan, F., Liao, Z., Duan, G.: Bubble motion near a wall under microgravity: existence of attractive and repulsive forces. Microgravity Sci. Technol. 23(1), 79–88 (2011)

    Article  Google Scholar 

  • Lorber, B., Ng, J.D., Lautenschlager, P., Giege, R.: Growth kinetics and motion of thaumatin crystals during USML-2 and LMS microgravity missions and comparison with earth controls. J. Cryst. Growth 208, 665–677 (2000)

    Article  Google Scholar 

  • Lyubimov, D., Lyubimova, T.P., Shklyaev, S.V.: Behaviour of a drop (bubble) in a pulsating flow near vibrating rigid surface. Microgravity research and applications in physical sciences and biotechnology, pp. 879–886. In: Proceedings of the First International Symposium held 10–15 Sept 2000 in Sorrento, Italy (2001)

  • Lyubimova, T., Cherepanova, A.: Vibrational dynamics of bubbles suspended in a viscous liquid. Third International Symposium on Physical Sciences (2007)

  • Maxey, M., Riley, J.: Equation for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883–889 (1982)

    Article  Google Scholar 

  • Oseen, C.: Uber die stokes’sche formel und uber eine verwandte aufgabe in der hydrodynamik. Ark. Mat. Astron. Fys. 6, 29–45 (1910)

    Google Scholar 

  • Ostrach, S.: Low-gravity fluid flows. Ann. Rev. Fluid Mech. 14, 313–345 (1982)

    Article  Google Scholar 

  • Saadatmand, M., Kawaji, M., Hu, H.H.: Vibration-induced attraction of a particle towards a wall in microgravity. In: 7th International Conference on Multiphase Flow, ICMF 2010, Tampa, FL USA, 30 May–4 June 2010

  • Shafie, S., Amin, N., Pop, I.: g-Jitter free convection flow in the stagnation-point region of a three-dimensional body. Mech. Res. Commun. 34(2), 115–122 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Simic-Stefani, S., Kawaji, M., Hu, H.: G-jitter induced motion of a protein crystal under microgravity. J. Cryst. Growth 294, 373–384 (2006)

    Article  Google Scholar 

  • Stokes, C.G.: Mathematical and Physical Papers 3, 1 (1851)

  • Tchen, C.M.: Mean value and correlation problems connected with the motion of small particles suspended in a turbulent fluid. Ph.D. thesis, Delft (1947)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Kawaji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saadatmand, M., Kawaji, M. & Hu, H.H. Vibration-Induced Attraction of a Particle Towards a Wall in Microgravity—The Mechanism of Attraction Force. Microgravity Sci. Technol. 24, 53–64 (2012). https://doi.org/10.1007/s12217-011-9291-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-011-9291-4

Keywords

Navigation