Skip to main content

Degenerate Quantum Gases in Microgravity

Abstract

Clouds of ultra-cold atoms and especially Bose–Einstein condensates (BEC) provide a source for coherent matter-waves in numerous earth bound experiments. Analogous to optical interferometry, matter-wave interferometers can be used for precision measurements allowing for a sensitivity orders of magnitude above their optical counterparts. However, in some respects the presence of gravitational forces in the lab limits experimental possibilities. In this article, we report about a compact and robust experiment generating Bose–Einstein condensates in the drop tower facility in Bremen, Germany. We also present the progress of building the succeeding experiment in which a two species atom interferometer will be implemented to test the weak equivalence principle with quantum matter.

This is a preview of subscription content, access via your institution.

References

  1. Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269(5221), 198–201 (1995)

    Article  Google Scholar 

  2. Berman, P.R.: Atom Interferometry. Academic Press, London (1996)

    Google Scholar 

  3. Davis, K.B., Mewes, M.-O., Andrews, M.R., van Druten, N.J., Durfee, D.S., Kurn, D.M., Ketterle, W.: Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75(22), 3969 (1995)

    Article  Google Scholar 

  4. Dieckmann, K., Spreeuw, R.J.C., Weidemüller, M., Walraven, J.T.M.: Two-dimensional magneto-optical trap as a source of slow atoms. Phys. Rev. A 58(5), 3891 (1998)

    Article  Google Scholar 

  5. Fray, S., Diez, C.A., Hänsch, T.W., Weitz, M.: Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle. Phys. Rev. Lett. 93(24), 240404 (2004)

    Article  Google Scholar 

  6. Gaaloul, N., Ahlers, H., Schulze, T., Singh, Y., Seidel, S., Herr, W., Ertmer, W., Rasel, E.: Quantum tests of the equivalence principle with atom interferometry. Acta Astronaut. 67(9–10), 1059–1062 (2001)

    Google Scholar 

  7. Hagley, E.W., Deng, L., Kozuma, M., Trippenbach, M., Band, Y.B., Edwards, M., Doery, M., Julienne, P.S., Helmerson, K., Rolston, S.L., Phillips, W.D.: Measurement of the coherence of a Bose-Einstein condensate. Phys. Rev. Lett. 83(16), 3112 (1999)

    Article  Google Scholar 

  8. Hänsel, W., Hommelhoff, P., Hänsch, T.W., Reichel, J.: Bose-Einstein condensation on a microelectronic chip. Nature 413(6855), 498–501 (2001)

    Article  Google Scholar 

  9. Kasevich, M., Chu, S.: Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67(2), 181 (1991)

    Article  Google Scholar 

  10. Müller, H., Chiow, S., Long, Q., Herrmann, S., Chu, S.: Atom interferometry with up to 24-photon-momentum-transfer beam splitters. Phys. Rev. Lett. 100(18), 180405 (2008)

    Article  Google Scholar 

  11. Pasquini, T.A., Saba, M., Jo, G., Shin, Y., Ketterle, W., Pritchard, D.E., Savas, T.A., Mulders, N.: Low velocity quantum reflection of Bose-Einstein condensates. Phys. Rev. Lett. 97(9), 093201 (2006)

    Article  Google Scholar 

  12. Peters, A., Chung, K.Y., Chu, S.: High-precision gravity measurements using atom interferometry. Metrologia 38, 25 (2001)

    Article  Google Scholar 

  13. Reichel, J., Hänsel, W., Hänsch, T.W.: Atomic micromanipulation with magnetic surface traps. Phys. Rev. Lett. 83(17), 3398 (1999)

    MATH  Article  Google Scholar 

  14. Schlamminger, S., Choi, K., Wagner, T.A., Gundlach, J.H., Adelberger, E.G.: Test of the equivalence principle using a rotating torsion balance. Phys. Rev. Lett. 100(4), 041101 (2008)

    Article  Google Scholar 

  15. Scott, R.G., Martin, A.M., Fromhold, T.M., Sheard, F.W.: Anomalous quantum reflection of Bose-Einstein condensates from a silicon surface: the role of dynamical excitations. Phys. Rev. Lett. 95(7), 073201 (2005)

    Article  Google Scholar 

  16. van Zoest, T., Gaaloul, N., Singh, Y., Ahlers, H., Herr, W., Seidel, S.T., Ertmer, W., Rasel, E., Eckart, M., Kajari, E., Arnold, S., Nandi, G., Schleich, W.P., Walser, R., Vogel, A., Sengstock, K., Bongs, K., Lewoczko-Adamczyk, W., Schiemangk, M., Schuldt, T., Peters, A., Konemann, T., Muntinga, H., Lammerzahl, C., Dittus, H., Steinmetz, T., Hansch, T.W., Reichel, J.: Bose-Einstein condensation in microgravity. Science 328(5985), 1540–1543 (2010)

    Article  Google Scholar 

  17. Varoquaux, G., Nyman, R.A., Geiger, R., Cheinet, P., Landragin, A., Bouyer, P.: How to estimate the differential acceleration in a two-species atom interferometer to test the equivalence principle. New J. Phys. 11(11), 113010 (2009)

    Article  Google Scholar 

  18. Vogel, A., Schmidt, M., Sengstock, K., Bongs, K., Lewoczko, W., Schuldt, T., Peters, A., Van Zoest, T., Ertmer, W., Rasel, E., Steinmetz, T., Reichel, J., Könemann, T., Brinkmann, W., Göklü, E., Lämmerzahl, C., Dittus, H., Nandi, G., Schleich, W., Walser, R.: Bose-Einstein condensates in microgravity. Appl. Phys. B 84(4), 663–671 (2006)

    Article  Google Scholar 

  19. Will, C.M.: The confrontation between general relativity and experiment. In: Living Rev. Relativity, vol. 9 (2006)

  20. Williams, J.G., Turyshev, S.G., Boggs, D.H.: Lunar laser ranging tests of the equivalence principle with the earth and moon. Int. J. Mod. Phys. D 18(7), 1129–1175 (2009)

    MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hauke Müntinga.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rudolph, J., Gaaloul, N., Singh, Y. et al. Degenerate Quantum Gases in Microgravity. Microgravity Sci. Technol. 23, 287–292 (2011). https://doi.org/10.1007/s12217-010-9247-0

Download citation

Keywords

  • BEC
  • Atom interferometry
  • Inertial Sensors
  • Microgravity
  • Equivalence principle