Skip to main content
Log in

Magnetic-Field Modulation of Gravity: Martian, Lunar, and Time-Varying Gravity

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Magnetic micro-gravity is used to simulate on Earth gravity conditions that occur on the moon, Mars or in interstellar space. The possibilities offered by this magnetic method are theoretically studied so as to develop ground-based devices enabling one to simulate various gravity conditions. The results of this theoretical study focus on perfect gravity compensation (micro-gravity), partial gravity compensation (lunar or Martian gravity) and also transient gravity compensation (acceleration or deceleration phases of spaceships).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beaugnon, E., Tournier, R.: Levitation of organic materials. Nature 349, 470 (1991)

    Article  Google Scholar 

  • Beysens, D., et al.: High-frequency driven capillary flows speed up the gas–liquid transition in zero-gravity conditions. Phys. Rev. Lett. 95, 034502 (2005)

    Article  Google Scholar 

  • Lorin, C., Mailfert, A.: Magnetic levitation in two-dimensional geometry with translational invariance. J. Appl. Phys. 104, 103904 (2008a)

    Article  Google Scholar 

  • Lorin, C., Mailfert, A.: Magnetic compensation of gravity by using superconducting axisymmetric coils: spherical harmonics method. J. Phys. Conferences Series 97, 012199 (2008b)

    Article  Google Scholar 

  • Lorin, C., Mailfert, A.: Magnetic compensation of gravity and centrifugal forces. Microgravity Sci. Tehcnol. 21, 123–127 (2010)

    Article  Google Scholar 

  • Lorin, C., Mailfert, A., Chatain, D., Felice, H., Beysens, D.: Magnetogravitational potential revealed near a liquid-vapor critical point. J. Appl. Phys. 106, 033905 (2009)

    Article  Google Scholar 

  • Lorin, C., Mailfert, A., Chatain, D.: Design of a large oxygen magnetic levitation facility. Microgravity Sci. Technol. 22, 71–77 (2010)

    Article  Google Scholar 

  • Motokawa, M., Hanai, M., Sato, T., Mogi, I., Awaji, S., Watanabe, K., Kitamura, N., Makihara, M.: Crystal growth and materials processing in the magnetic levitation condition. J. Magn. Magn. Mater. 226–230, 2090–2093 (2001)

    Article  Google Scholar 

  • Quettier, L., Felice, H., Mailfert, A., Chatain, D., Beysens, D.: Magnetic compensation of gravity forces in liquid/gas mixtures: surpassing intrinsic limitations of a superconducting magnet by using ferromagnetic inserts. Eur. Phys. J. Appl. Phys. 32, 167–175 (2005)

    Article  Google Scholar 

  • Pichavant, G., Cariteau, B., Chatain, D., Nikolayev, V., Beysens, D.: Magnetic compensation of gravity: experiments with oxygen, to be published. Microgravity Sci. Technol. 21, 129–133 (2009)

    Article  Google Scholar 

  • Wakayama, N., Ataka, M., Abe, H.: Effect of a magnetic field gradient on the crystallization of hen lysozyme. J. Cryst. Growth 178, 653–656 (1997)

    Article  Google Scholar 

  • Valles, J.M., Maris, H.J., Seidel, G.M., Tang, J., Yao, W.: Magnetic levitation-based Martian and Lunar gravity simulator. Adv. Space Res. 36(1), 114–118 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clément Lorin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorin, C., Mailfert, A. & Chatain, D. Magnetic-Field Modulation of Gravity: Martian, Lunar, and Time-Varying Gravity. Microgravity Sci. Technol. 23, 135–142 (2011). https://doi.org/10.1007/s12217-010-9192-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-010-9192-y

Keywords

Navigation