Skip to main content
Log in

Convective Boiling Between 2D Plates: Microgravity Influence on Bubble Growth and Detachment

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The experiment detailed in this paper presents results obtained on the nucleation, growth and detachment of HFE-7100 confined vapour bubbles. Bubbles are created on an artificial nucleation site between two-dimensional plates under terrestrial and microgravity conditions. The experiments are performed by varying the shear flow by changing the convective mass flow rate, and varying the bubble nucleation rate by changing the heat flux supplied. The experiments are performed under normal (1 g) and reduced gravity (μg). The distance between the plates is equal to 1 mm. The results of these experiments are related to the detachment diameters of bubbles on the single artificial nucleation site and to the associated effects on the heat transfer by the confinement influence. The experimental device allows the observation of the flow using both visible video camera and infrared video camera. Here, we present the results obtained concerning the influence of gravity on the bubble detachment diameter and the images of 2D bubbles obtained in microgravity by means of an infrared camera. The following parameters: nucleation site surface temperature, bubble detachment diameter and bubble nucleation frequency evidence modifications due to microgravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arlabosse, P.: Etude des transferts de chaleur et de masse par effet Marangoni: application à la compréhension du mécanisme de l’ébullition en apesanteur. Ph.D. thesis, Université de Provence (1997)

  • Barthès, M.: Ebullition sur site isolé : étude expérimentale de la croissance d’une bulle et des transferts associés. Ph.D. thesis, Université de Provence (2006)

  • Celata, G.P., Cumo, M., Gervasi, M., Zummo, G.: Quenching experiments inside 6.0 mm tube at reduced gravity. Int. Heat, J. Mass Trans. 52(11–12), 2800–2814 (2009)

    Google Scholar 

  • Di Marco, P., Grassi, W., Memoli, G., Takamasa, T., Tomiyama, A., Hosokawa, S.: Influence of electric field on single gas-bubble growth and detachment in microgravity Int. J. Multiph. Flow 29(4), 559–578 (2003)

    Article  MATH  Google Scholar 

  • Fritz, W.: Maximum volume of vapour bubbles. Physik Zeitschr. 36, 379–384 (1935)

    Google Scholar 

  • Henry, C.D., Kim, J.: A study of the effects of heater size, subcooling, and gravity level on pool boiling heat transfer, Int. Heat, J. Fluid Flow 25, 262–273 (2004)

    Article  Google Scholar 

  • Kawanami, O., Azuma, H., Ohta, H.: Effect of gravity on cryogenic boiling heat transfer during tube quenching. Int. Heat, J. Mass Trans. 50, 3490–3497 (2007)

    Article  MATH  Google Scholar 

  • Kenning, D., et al.: Optical studies of boiling heat transfer: insights and limitations. Int. Heat J. Fluid Flow 25(2), 209–222 (2004)

    Article  Google Scholar 

  • Luciani, S., Brutin, D., LeNiliot, C., Tadrist, L., Rahli, O.: Boiling heat transfer in a vertical microchannel: local estimation during flow boiling with a non-intrusive method. Multiph. Sci. Technol. 21(4), 297–328 (2009)

    Article  Google Scholar 

  • Mainhagu, J., et al.: Measurement by Laser Induced Fluorescence on miscible density driven flows in a Hele-Shaw cell: settings and preliminary results. C. r., Méc. 335(2), 105–112 (2007)

    MATH  Google Scholar 

  • Meignin, L., et al.: Subcritical Kelvin–Helmholtz instability in a Hele-Shaw cell. Phys. Rev. Lett. 90(23), 234502 (2003)

    Article  Google Scholar 

  • Sodtke, C., Kern, J., Schweizer, N., Stephan, P.: High resolution measurements of wall temperature distribution underneath a single vapour bubble under low gravity conditions. Int. Heat J. Mass Trans. 49, 1100–1106 (2006)

    Article  Google Scholar 

  • Straub, J.: Microscale boiling heat transfer under 0g and 1g conditions. Int. Thermal. J. Sci. 39, 490–497 (2000)

    Article  Google Scholar 

  • Verthier, B., Celata, G.P., Zummo, G., Colin, C., Follet, J.: Effect of gravity on film boiling heat transfer and rewetting temperature during quenching. Microgravity Sci. Technol. (2009). doi:10.1007/s12217-009-9135-7

    Google Scholar 

  • Zhang, H., Mudawar, I., Hasan, M.: Flow boiling CHF in microgravity. Int. Heat J. Mass Trans. 48, 3107–3118 (2005)

    Article  Google Scholar 

  • Zhao, J.F., Wan, S.X., Liu, G., Yan, N., Hu, W.R.: Subcooled pool boiling on thin wire in microgravity. Acta Astronaut. 64, 188–194 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Brutin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serret, D., Brutin, D., Rahli, O. et al. Convective Boiling Between 2D Plates: Microgravity Influence on Bubble Growth and Detachment. Microgravity Sci. Technol. 22, 377–385 (2010). https://doi.org/10.1007/s12217-010-9186-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-010-9186-9

Keywords

Navigation