Skip to main content
Log in

A New Paradigm of Crystallization Arising from Non-standard Nucleation Pathways

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

There is increasing evidence that large classes of colloid materials crystallize via a non-standard nucleation mechanism involving intermediate metastable phases. In this paper recent work on the microscopic derivation of the phase diagram and free energy barriers in the nucleation of protein crystals, and on the kinetics of growth of solid particles in the post-nucleation regime is reviewed. The extent to which combined structural and density fluctuation give rise to favourable crystallization pathways involving an intermediate fluid phase is assessed and the connection with experiments in microgravity at ISS (PROMISS-2 and NANOSLAB-2) is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, V.J., Lekkerkerker, H.N.W.: Insights into phase transition kinetics from colloid science. Nature 416, 811 (2002)

    Article  Google Scholar 

  • Basios, V.: Self-organization and nonequilibrium aggregation phenomena in colloidal matter: why microgravity matters. Int. J. Bifurc. Chaos 16(6), 1689–1700 (2006)

    Article  Google Scholar 

  • Descombes, S., Dumont, T., Louvet, V., Massot, M.: On the local and global errors of splitting approximations of reaction-diffusion equations with high spatial gradients. Int. J. Comput. Math. 84, 6 (2007) (Special Issue on Splitting Methods for Differential Equations)

    Article  MathSciNet  Google Scholar 

  • Evrard, C., Maes, D., Zegers, I., Declercq, J.-P., Vanhee, C., Martial, J., Wyns, L., Van de Weerdt, C.: TIM crystal grown by capillary counter-diffusion: statistical evidence of quality improvement in microgravity. Cryst. Growth Des. 7, 2161–2166 (2007)

    Article  Google Scholar 

  • Filobelo, L.F., Galkin, O., Vekilov, P.G.: Spinodal for the solution-to-crystal phase transformation. J. Chem. Phys. 123, 014904 (2005)

    Article  Google Scholar 

  • Garza-López, R.A., Bouchard, P., Nicolis, G., Sleutel, M., Brzezinski, J., Kozak, J.J.: Kinetics of docking in postnucleation stages of self-assembly. J. Chem. Phys. 128, 114701 (2008)

    Article  Google Scholar 

  • Gliko, O., Neumair, N., Pan, W., Haase, I., Fisher, M., Bacher, A., Weinkauf, S., Vekilov, P.G.: A metastable prerequisite for the growth of lumazine synthase crystals. J. Am. Chem. Soc. 127, 3433 (2005)

    Article  Google Scholar 

  • Hayasaka, K., Liang, D., Huybrechts, W., De Waele, B.R., Houthoofd, K.J., Eloy, P., Gaigneaux, E.M., van Tendeloo, G., Thybaut, J.W., Marin, G.B., Denayer, J.F.M., Baron, G.V., Jacobs, P.A., Kirschhock, C.E.A., Martens, J.A.: Formation of ZSM-22 zeolite catalytic particles by fusion of elementary nanorods. Chem. Eur. J. 13(36), 10070–10077 (2007)

    Article  Google Scholar 

  • Kozak, J.J., Basios, V., Nicolis, G.: Geometrical effects in protein nucleation. Biophys. Chem. 105, 495–500 (2003)

    Article  Google Scholar 

  • Kozak, J.J., Nicolis, C., Nicolis, G.: Modeling the early stages of self-assemply in nanophase materials. J. Chem. Phys. 126(154701), 1–8 (2007)

    Google Scholar 

  • Liang, D., Follens, L.R.A., Aerts, A., Martens, J.A., VanTendeloo, G., Kirschhock, C.E.A.: TEM observation of aggregation steps in room-temperature silicalite-1 zeolite formation. J. Phys. Chem. C 111(39), 14283–14285 (2007)

    Article  Google Scholar 

  • Lutsko, J.F.: First principles derivation of Ginzburg-Landau free energy models for crystalline systems. Physica A 366, 229 (2006a)

    Article  Google Scholar 

  • Lutsko, J.F.: Properties of non-fcc hard-sphere solids predicted by density functional theory. Phys. Rev. E 74, 021121 (2006b)

    Article  MathSciNet  Google Scholar 

  • Lutsko, J.F.: Ginzburg–Landau theory of the liquid–solid interface and nucleation for hard-spheres. Phys. Rev. E 74, 021603 (2006c)

    Article  MathSciNet  Google Scholar 

  • Lutsko, J.F.: Density functional theory of inhomogeneous liquids. I. The liquid–vapor interface in Lennard–Jones fluids. J. Chem. Phys. 127, 054701 (2007)

    Article  Google Scholar 

  • Lutsko, J.F., Nicolis, G.: The effect of the range of interaction on the phase diagram of a globular protein. J. Chem. Phys. 122, 24907 (2005)

    Article  Google Scholar 

  • Lutsko, J.F., Nicolis, G.: Theoretical evidence of a dense-fluid precursor to crystallization. Phys. Rev. Lett. 96, 046102 (2006)

    Article  Google Scholar 

  • Maes, D., Decanniere, K., Zegers, I., Vanhee, C., Sleutel, M., Willaert, R., Van de Weerdt, C., Martial, J., Declercq, J.-P., Evrard, C., Otalora, F., Garcia-Ruiz, J.-M.: Protein crystallisation under microgravity conditions: what did we learn on TIM crystallisation from the Soyuz missions? Microgravity Sci. Technol. (2008, in press)

  • Nicolis, G., Nicolis, C.: Enhancement of the nucleation of protein crystals by the presence of an intermediate phase: a kinetic model. Physica A 323, 139–154 (2003)

    Article  MathSciNet  Google Scholar 

  • Nicolis, G., Nicolis, C.: Kinetics of phase transitions in the presence of an intermediate state: a generic model. Physica A 351, 22–39 (2005)

    Article  Google Scholar 

  • Nicolis, G., Nicolis, C.: Foundations of Complex Systems. World Scientific, Singapore (2007)

    MATH  Google Scholar 

  • Nicolis, G., Basios, V., Nicolis, C.: Pattern formation and fluctuation-induced transitions in protein-crystallization. J. Chem. Phys. 120, 7708–7719 (2004)

    Article  Google Scholar 

  • Oxtoby, D.W.: Materials chemistry: crystals in a flash. Nature 420, 277 (2002)

    Article  Google Scholar 

  • Shiryayev, A., Gunton, J.D.: Crystal nucleation for a model of globular proteins. J. Chem. Phys. 120, 8318 (2004)

    Article  Google Scholar 

  • Talanquer, V., Oxtoby, D.W.: Crystal nucleation in the presence of a metastable critical point. J. Chem. Phys. 109, 223 (1998)

    Article  Google Scholar 

  • ten Wolde, P.R., Frenkel, D.: Enhancement of protein crystal nucleation by critical density fluctuations. Science 277, 1975 (1997)

    Article  Google Scholar 

  • Vekilov, P.G.: Dense liquid precursor for the nucleation of ordered solid phases from solution. Cryst. Growth Des. 4, 671 (2004)

    Article  Google Scholar 

  • Yau, S.-T., Vekilov, P.G.: Quasi-planar nucleus structure in apoferritin crystallisation. Nature 406, 494–497 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Basios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basios, V., Lutsko, J., Nicolis, G. et al. A New Paradigm of Crystallization Arising from Non-standard Nucleation Pathways. Microgravity Sci. Technol 21, 47–51 (2009). https://doi.org/10.1007/s12217-008-9061-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-008-9061-0

Keywords

Navigation