Skip to main content
Log in

Human Powered Centrifuges on the Moon or Mars

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Exposure to microgravity leads to “cardiovascular deconditioning” (CVD), because of the fluids shift toward the thorax. CVD is characterised by: 1) a decrease of plasma and interstitial fluid volumes, 2) a relative increase of the erythrocytes mass, 3) a decrease of arterial diastolic pressure, of the stroke volume, of the end-diastolic volume and of the left ventricular mass. CVD can be expected to occur also in astronauts living permanently on Lunar or Martian bases, since on these celestial bodies the acceleration of gravity is about 0.165 and 0.379 the Earth value. In these conditions, cycling on appropriately constructed tracks may be useful to recreate artificial gravity and to allow the astronauts to perform physical exercise. Indeed, a cyclist riding a bicycle on a circular track, generates an outward acceleration vector which depends on the radius of the track and on the ground speed. The vectorial sum of this last and the acceleration of gravity acts in the head to feet direction, thus increasing the effects of gravity on the cardiovascular system. We propose to construct on a Lunar or Martian base a circular “track tunnel” with a radius of 25 m. We show here that when cycling on this track tunnel at speeds between 10 to 15 m · s − 1, astronauts will generate a g vector acting along the head to feet axis ranging from 0.44 to 0.99 of the Earth value. We suggest that the logistics and feasibility of these track-tunnels should be studied in view of their possible implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonutto, G., Capelli, C., Di Prampero, P.E.: Pedalling in space as a countermeasure to microgravity deconditioning. Microgravity Q. 1, 93–101 (1991)

    Google Scholar 

  • Antonutto, G., Capelli, C., Girardis, M., Zamparo, P., di Prampero, P.E.: Effects of microgravity on maximal power of lower limbs during very short efforts in humans. J. Appl. Physiol. 86, 85–92 (1999)

    Google Scholar 

  • Brunelli, F.: Foundamentals of space life sciences. In: Churcill, S.E. (ed.) Human Factors and Habitability Issues for the Design of Space Habitats, pp. 221–246. Krieger, Melbourne (1993)

    Google Scholar 

  • Bungo, M.W., Johnson, P.C.: Cardiovascular examinations and observations of deconditioning during the space shuttle orbital flight test program. Aviat. Space Environ. Med. 54, 1001–1004 (1983)

    Google Scholar 

  • Bungo, M.W., Goldwater, D.J., Popp, R.L., Sandler, H.: Echocardiographic evaluation of space shuttle crewmembers. J. Appl. Physiol. 62, 278–283 (1987)

    Google Scholar 

  • Burton, R.R.: Artificial gravity in space flight. J. Gravit. Physiol. 1, 15–18 (1994)

    Google Scholar 

  • Burton, R.R., Meeker, L.J.: Taking gravity into space. J. Gravit. Physiol. 4, 17–20 (1997)

    Google Scholar 

  • Cardus, D.: Artificial gravity in space and in medical research. J. Gravit. Physiol. 1, 19–22 (1994)

    Google Scholar 

  • Charles, J.B., Bungo, M.W., Fortner, G.W.: Space physiology and medicine. In: Nicogossian, A.E., Leach Huntoon, C., Pool, S.M. (eds.) Cardiopulmonary Function, pp. 286–304. Lea & Febiger, Philadelphia (1994)

    Google Scholar 

  • Churchill, S.E., Bungo, M.W.: Fundamentals of space life sciences. In: Churchill, S.E. (ed.) Response of the Cardiovascular System to Spaceflight, pp. 41–63. Krieger, Malabar (1997)

    Google Scholar 

  • Clement, G.: Fundamentals of Space Medicine. Springer, Berlin (2005)

    Google Scholar 

  • Delp, M.D.: Arterial adaptations in microgravity contribute to orthostatic tolerance. J. Appl. Physiol. 102, 836 (2007)

    Article  Google Scholar 

  • di Prampero, P.E.: Cycling on Earth, in space, on the Moon. Eur. J. Appl. Physiol. 82, 345–360 (2000)

    Article  Google Scholar 

  • di Prampero, P.E., Narici, M.V.: Muscles in microgravity: from fibres to human motion. J. Biomech. 36, 403–412 (2003)

    Article  Google Scholar 

  • Dorfman, T.A., Levine, B.D., Tillery, T., Peshock, R.M., Hastings, J.L., Schneider, S.M., Macias, B.R., Biolo, G., Hargens, A.R.: Cardiac atrophy in women following bed rest. J. Appl. Physiol. 103, 8–16 (2007)

    Article  Google Scholar 

  • Fritsch, J.M., Charles, J.B., Bennett, B.S., Jones, M.M., Eckberg, D.L.: Short-duration spaceflight impairs human carotid baroreceptor-cardiac reflex responses. J. Appl. Physiol. 73, 664–671 (1992)

    Google Scholar 

  • Gazenko, O.G., Schilzenko, E.B., Yegorov, A.D.: Cardiovascular changes in prolonged spaceflights. In: 36th IAF Conference, Stockholm, 7–12 October 1985

  • Grandl, W.: Lunae Base 2015 Stage I. Preliminary design study. Acta Astronaut. 60, 554–560 (2007)

    Article  Google Scholar 

  • Greenleaf, J.E., Gundo, D.P., Watenpaugh, D.E., Mulenburg, G.M., McKenzie, M.A., Looft-Wilson, R., Hargens, A.R.: Cyclepowered short radius (1.9 m) centrifuge: effect of exercise versus passive acceleration on heart rate in humans. NASA Technical Memorandum (1997)

  • Henry, W.L., Epstein, S.E., Griffith, L.M., Goldstein, R.E., Redwood, D.R.: Biomedical results from Skylab (NASA SP-377). In: Johnston, R.S., Dietlein, L.F. (eds.) Effect of Prolonged Space Flight on Cardiac Function and Dimension, pp. 366–371. US Government Printing Office, Washington DC (1977)

    Google Scholar 

  • Hinghofer-Szalkay, H.C.: Biological and medical research in space. In: Moore, D., Bie, P., Oser, H. (eds.) Physiology of Cardiovascular, Respiratory, Interstitial, Endocrine, Immune and Muscular Systems, pp. 107–153. Springer, Berlin (1996)

    Google Scholar 

  • Hwang, S., Shelkovnikov, S.A., Purdy, R.E.: Simulated microgravity effects on the rat carotid and femoral arteries: role of contractile protein expression and mechanical properties of the vessel wall. J. Appl. Physiol. 102, 1595–603 (2007)

    Article  Google Scholar 

  • Lane, H.W., Alfrey, C.P., Driscoll, T.B., Smith, S.M., Nyquist, L.E.: Control of red blood cell mass during spaceflight. J. Gravit. Physiol. 3, 87–88 (1996)

    Google Scholar 

  • Nelson, M.: Foundamentals of space life sciences. In: Churcill, S.E. (ed.) Bioenergetic Life Support for Space Habitation and Extended Planetary Missions, pp. 315–336. Krieger, Melbourne

    Google Scholar 

  • Newman, D., Barratt, M.: Foundamentals of space life sciences. In: Churcill, S.E. (ed.) Life Support and Performance Issues for Extravehicular Activity, pp. 337–364. Krieger, Melbourne (1997)

    Google Scholar 

  • Pavy-Le Traon, A., Heer, M., Narici, M.V., Rittweger, J., Vernikos, J.: From space to Earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur. J. Appl. Physiol. 101, 143–94 (2007)

    Article  Google Scholar 

  • Powell, M.R., Horrigan, D.J., Waligora, J.M., Norfleet, W.T.: Space physiology and medicine. In: Nicogossian, A.E., Huntoon, C.L., Pool, S.L. (eds.) Extravehicular Activities, pp. 128–140. Lea & Febiger, Philadelphia (1993)

    Google Scholar 

  • Tuday, E.C., Meck, J.V., Nyhan, D., Shoukas, A.A., Berkowitz, D.E.: Microgravity-induced changes in aortic stiffness and their role in orthostatic intolerance. J. Appl. Physiol. 102, 853–858 (2007)

    Article  Google Scholar 

  • Vil-Viliams, I.F., Kotovskaya, A.R., Shipov, A.A.: Biomedical aspects of artificial gravity. J. Gravit. Physiol. 4, 27–28 (1997)

    Google Scholar 

  • Yegorov, A.D., Alferova, I.V., Polyakiva, A.P.: State of cardiodynamics under conditions of long-term weightlessness. Kosm. Biol. Aviakosm. Med. 22, 4–7 (1988a)

    Google Scholar 

  • Yegorov, A.D., Itsekhovskiy, O.G., Alferova, I.V., Turchaninova, V.F., Polenova, A.P., Golubchikova, Z.A., Domracheva, M.V., Lyamin, V.R., Turbasov, V.D.: Study of cardiovascular system of Salyut-6 prime crew. USSR Space Life Digest. 14, 18–19 (1988b)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Lazzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

di Prampero, P.E., Lazzer, S. & Antonutto, G. Human Powered Centrifuges on the Moon or Mars. Microgravity Sci. Technol 21, 209–215 (2009). https://doi.org/10.1007/s12217-008-9046-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-008-9046-z

Keywords

Navigation