Skip to main content
Log in

Abstract multiplicity results for (pq)-Laplace equations with two parameters

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

We investigate the existence and multiplicity of abstract weak solutions of the equation \(-\Delta _p u -\Delta _q u=\alpha |u|^{p-2}u+\beta |u|^{q-2}u\) in a bounded domain under zero Dirichlet boundary conditions, assuming \(1<q<p\) and \(\alpha ,\beta \in {\mathbb {R}}\). We determine three generally different ranges of parameters \(\alpha \) and \(\beta \) for which the problem possesses a given number of distinct pairs of solutions with a prescribed sign of energy. As auxiliary results, which are also of independent interest, we provide alternative characterizations of variational eigenvalues of the q-Laplacian using smaller and larger constraint sets than in the standard minimax definition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Alama, S., Tarantello, G.: On semilinear elliptic equations with indefinite nonlinearities. Calc. Var. Partial. Differ. Equ. 1(4), 439–475 (1993). https://doi.org/10.1007/BF01206962

    Article  MathSciNet  Google Scholar 

  2. Bandle, C., Pozio, M.A., Tesei, A.: The asymptotic behavior of the solutions of degenerate parabolic equations. Trans. Am. Math. Soc. 303(2), 487–501 (1987). https://doi.org/10.1090/S0002-9947-1987-0902780-3

    Article  MathSciNet  Google Scholar 

  3. Berestycki, H., Capuzzo-Dolcetta, I., Nirenberg, L.: Variational methods for indefinite superlinear homogeneous elliptic problems. Nonlinear Differ. Equ. Appl. 2(4), 553–572 (1995). https://doi.org/10.1007/BF01210623

    Article  MathSciNet  Google Scholar 

  4. Bobkov, V., Kolonitskii, S.: Improved Friedrichs inequality for a subhomogeneous embedding. J. Math. Anal. Appl. 527(1), 127383 (2023). https://doi.org/10.1016/j.jmaa.2023.127383

    Article  MathSciNet  Google Scholar 

  5. Bobkov, V., Tanaka, M.: On positive solutions for \((p, q)\)-Laplace equations with two parameters. Calc. Var. Partial. Differ. Equ. 54, 3277–3301 (2015). https://doi.org/10.1007/s00526-015-0903-5

    Article  MathSciNet  Google Scholar 

  6. Bobkov, V., Tanaka, M.: On sign-changing solutions for \((p, q)\)-Laplace equations with two parameters. Adv. Nonlinear Anal. 8(1), 101–129 (2016). https://doi.org/10.1515/anona-2016-0172

    Article  MathSciNet  Google Scholar 

  7. Bobkov, V., Tanaka, M.: Remarks on minimizers for \((p, q)\)-Laplace equations with two parameters. Commun. Pure Appl. Anal. 17(3), 1219–1253 (2018). https://doi.org/10.3934/cpaa.2018059

    Article  MathSciNet  Google Scholar 

  8. Champion, T., De Pascale, L.: Asymptotic behaviour of nonlinear eigenvalue problems involving \(p\)-Laplacian-type operators. Proc. R. Soc. Edinb. Sect. A Math. 137(6), 1179–1195 (2007). https://doi.org/10.1017/S0308210506000667

    Article  MathSciNet  Google Scholar 

  9. Clark, D.C.: A variant of the Lusternik–Schnirelman theory. Indiana Univ. Math. J. 22(1), 65–74 (1972)

    Article  MathSciNet  Google Scholar 

  10. Colasuonno, F.: Multiple solutions for asymptotically \(q\)-linear \((p, q)\)-Laplacian problems. Math. Methods Appl. Sci. 45(14), 8655–8673 (2022). https://doi.org/10.1002/mma.7472

    Article  MathSciNet  Google Scholar 

  11. Colasuonno, F., Squassina, M.: Eigenvalues for double phase variational integrals. Ann. Mat. 1923(195), 1917–1959 (2016). https://doi.org/10.1007/s10231-015-0542-7

    Article  MathSciNet  Google Scholar 

  12. Cuesta, M.: On the Fučík spectrum of the Laplacian and \(p\)-Laplacian. In: Proceedings of the “2000 Seminar in Differential Equations”, Kvilda (Czech Republic) (2000). http://www-lmpa.univ-littoral.fr/~cuesta/articles/kavilda0.pdf

  13. Degiovanni, M., Marzocchi, M.: On the dependence on \(p\) of the variational eigenvalues of the \(p\)-Laplace operator. Potential Anal. 43, 593–609 (2015). https://doi.org/10.1007/s11118-015-9487-0

    Article  MathSciNet  Google Scholar 

  14. Díaz, J.I., Hernández, J., Il’yasov, Y.: On the existence of positive solutions and solutions with compact support for a spectral nonlinear elliptic problem with strong absorption. Nonlinear Anal. Theory Methods Appl. 119, 484–500 (2015). https://doi.org/10.1016/j.na.2014.11.019

    Article  MathSciNet  Google Scholar 

  15. Dinca, G., Jebelean, P., Mawhin, J.: Variational and topological methods for Dirichlet problems with \(p\)-Laplacian. Port. Math. 58(3), 339 (2001)

    MathSciNet  Google Scholar 

  16. Drábek, P., Pohozaev, S.I.: Positive solutions for the \(p\)-Laplacian: application of the fibrering method. Proc. R. Soc. Edinb. Sect. A Math. 127(4), 703–726 (1997). https://doi.org/10.1017/S0308210500023787

    Article  Google Scholar 

  17. Fleckinger-Pellé, J., Takáč, P.: An improved Poincaré inequality and the \(p\)-Laplacian at resonance for \(p>2\). Adv. Differ. Equ. 7(8), 951–971 (2002). https://doi.org/10.57262/ade/1356651685

    Article  Google Scholar 

  18. Fučík, S., Nečas, J.: Ljusternik–Schnirelmann theorem and nonlinear eigenvalue problems. Math. Nachr. 53(1–6), 277–289 (1972). https://doi.org/10.1002/mana.19720530123

    Article  MathSciNet  Google Scholar 

  19. Hedberg, L. I., Kilpeläinen, T.: On the stability of Sobolev spaces with zero boundary values. Math. Scand. 245–258 (1999)

  20. Il’yasov, Y.: On positive solutions of indefinite elliptic equations. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics 333(6), 533–538 (2001). https://doi.org/10.1016/S0764-4442(01)01924-3

    Article  MathSciNet  Google Scholar 

  21. Ilyasov, Y., Silva, K.: On branches of positive solutions for \(p\)-Laplacian problems at the extreme value of the Nehari manifold method. Proc. Am. Math. Soc. 146(7), 2925–2935 (2018). https://doi.org/10.1090/proc/13972

    Article  MathSciNet  Google Scholar 

  22. Kaufmann, U., Quoirin, H.R., Umezu, K.: Past and recent contributions to indefinite sublinear elliptic problems. Rendiconti dell’Istituto di Matematica dell’Universitá di Trieste 52, 217–241 (2020). https://doi.org/10.13137/2464-8728/30913

    Article  MathSciNet  Google Scholar 

  23. Kaufmann, U., Quoirin, H.R., Umezu, K.: Uniqueness and positivity issues in a quasilinear indefinite problem. Calc. Var. Partial. Differ. Equ. 60(5), 187 (2021). https://doi.org/10.1007/s00526-021-02057-8

    Article  MathSciNet  Google Scholar 

  24. Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. Theory Methods Appl. 12(11), 1203–1219 (1988). https://doi.org/10.1016/0362-546X(88)90053-3

    Article  MathSciNet  Google Scholar 

  25. Lieberman, G.M.: The natural generalizationj of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations. Commun. Partial Differ. Equ. 16(2–3), 311–361 (1991). https://doi.org/10.1080/03605309108820761

    Article  Google Scholar 

  26. Lindqvist, P.: On non-linear Rayleigh quotients. Potential Anal. 2, 199–218 (1993). https://doi.org/10.1007/BF01048505

    Article  MathSciNet  Google Scholar 

  27. Marano, S., Mosconi, S.: Some recent results on the Dirichlet problem for \((p, q)\)-Laplace equations. Discrete Contin. Dyn. Syst. Ser. S 11(2), 279–291 (2017). https://doi.org/10.3934/dcdss.2018015

    Article  MathSciNet  Google Scholar 

  28. Parini, E.: Continuity of the variational eigenvalues of the \(p\)-Laplacian with respect to \(p\). Bull. Aust. Math. Soc. 83(3), 376–381 (2011). https://doi.org/10.1017/S000497271100205X

    Article  MathSciNet  Google Scholar 

  29. Perera, K., Agarwal, R.P., O’Regan, D.: Morse theoretic aspects of \(p\)-Laplacian type operators. Am. Math. Soc. (2010). https://doi.org/10.1090/surv/161

    Article  Google Scholar 

  30. Quoirin, H.R., Silva, K.: Local minimizers for a class of functionals over the Nehari set. J. Math. Anal. Appl. 519(2), 126851 (2023). https://doi.org/10.1016/j.jmaa.2022.126851

    Article  MathSciNet  Google Scholar 

  31. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. American Mathematical Society (1986)

    Book  Google Scholar 

  32. Singer, I.: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. Springer, Berlin (1970). https://doi.org/10.1007/978-3-662-41583-2

    Book  Google Scholar 

  33. Struwe, M.: Variational methods. In: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems (2008). Springer, Berlin. https://doi.org/10.1007/978-3-540-74013-1

  34. Szulkin, A.: Ljusternik-Schnirelmann theory on \(C^1\)-manifolds. Annales de l’Institut Henri Poincaré C, Analyse non linéaire 5(2), 119–139 (1988). https://doi.org/10.1016/S0294-1449(16)30348-1

    Article  Google Scholar 

  35. Tanaka, M.: Generalized eigenvalue problems for \((p, q)\)-Laplacian with indefinite weight. J. Math. Anal. Appl. 419(2), 1181–1192 (2014). https://doi.org/10.1016/j.jmaa.2014.05.044

    Article  MathSciNet  Google Scholar 

  36. Tanaka, M.: Uniqueness of a positive solution and existence of a sign-changing solution for \((p, q)\)-Laplace equation. J. Nonlinear Funct. Anal. 2014, 1–15 (2014)

    Google Scholar 

  37. Tiba, D.: A property of Sobolev spaces and existence in optimal design. Appl. Math. Optim. (2003). https://doi.org/10.1007/s00245-002-0740-8

    Article  MathSciNet  Google Scholar 

  38. Tienari, M.: Ljusternik–Schnirelmann theorem for the generalized Laplacian. J. Differ. Equ. 161(1), 174–190 (2000). https://doi.org/10.1006/jdeq.2000.3712

    Article  MathSciNet  Google Scholar 

  39. Zeidler, E.: Nonlinear Functional Analysis and its Application III: Variational Methods and Optimization. Springer, New York (1985). https://doi.org/10.1007/978-1-4612-5020-3

    Book  Google Scholar 

  40. Zongo, E.W.B., Ruf, B.: Nonlinear eigenvalue problems and bifurcation for quasi-linear elliptic operators. Mediterr. J. Math. 19(3), 99 (2022). https://doi.org/10.1007/s00009-022-02015-4

    Article  MathSciNet  Google Scholar 

  41. Zongo, E.W.B., Ruf, B.: Bifurcation results for nonlinear eigenvalue problems involving the \((p,q)\)-Laplace operator (2022). arXiv:2210.10174

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Bobkov.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

M. Tanaka was supported by JSPS KAKENHI Grant Number JP 23K03170.

Appendices

Characterizations of \(\lambda _k(q)\)

In this section, we discuss alternative characterizations of variational eigenvalues \(\lambda _k(q)\) using smaller and larger constraint sets than in the standard minimax definition (1.1). The results of this section require less restrictive assumptions on a bounded domain than that additionally imposed in Sect. 1. Because of this, we will provide explicit assumptions on \(\Omega \) in each statement.

Let \(q, r>1\). Recall the definition (1.1) of \(\lambda _k(q)\):

$$\begin{aligned} \lambda _k(q) = \inf \left\{ \max _{u\in A} \frac{\Vert \nabla u\Vert _q^q}{\Vert u\Vert _q^q}:~ A\in \Sigma _k(q) \right\} , \end{aligned}$$

and consider a related object \(\lambda _k(q;r)\) defined as

$$\begin{aligned} \lambda _k(q;r) = \inf \left\{ \sup _{u\in A} \frac{\Vert \nabla u\Vert _q^q}{\Vert u\Vert _q^q}:~ A\in {\Sigma }_k(r) ~\text {and}~ A \subset W^{1,q} \right\} , \end{aligned}$$
(A.1)

where \(\Sigma _k(r)\) is given by (1.2), i.e.,

$$\begin{aligned} \Sigma _k(r) =\left\{ \, A\subset W_0^{1,r} \setminus \{0\}:~ A\ \mathrm{is\ symmetric,\ compact\ in}\ W^{1,r}_0,\ \textrm{and}\ \gamma (A;W_0^{1,r})\ge k\,\right\} . \end{aligned}$$

Throughout this section, we use the extended notation \(\gamma (A;X)\) for the Krasnoselskii genus to emphasize its dependence on a topological vector space X with respect to which the continuity of an odd mapping h in the definition (1.3) of the genus is understood.

Clearly, \(\lambda _k(q;q)=\lambda _k(q)\) for any \(q>1\), while \(\lambda _k(q;r)\) is defined using different constraints than \(\lambda _k(q)\) whenever \(q \ne r\). The constraint \(A \subset W^{1,q}\) in (A.1) is trivial in the case \(q<r\) since \(W_0^{1,r}\subset W_0^{1,q}\), but it is required when \(q>r\), in order for the Rayleigh quotient \(\Vert \nabla u\Vert _q^q/\Vert u\Vert _q^q\) to be defined over \(A\in {\Sigma }_k(r)\).

We are interested in the relation between \(\lambda _k(q;r)\) and \(\lambda _k(q)\). Let us start with the following observation on the Krasnoselskii genus.

Lemma A.1

Let XY be topological vector spaces. Let \(A \subset X {\setminus } \{0\}\) be symmetric and closed. Let \(\pi : A \rightarrow Y\) be odd and continuous. Let \(\pi (A) \subset Y \setminus \{0\}\) be (symmetric and) closed. Then \(\gamma (A;X) \le \gamma (\pi (A);Y)\). If, in addition, the inverse mapping \(\pi ^{-1}: \pi (A) \rightarrow A\) is continuous (and hence \(\pi (A)\) and A are homeomorphic), then \(\gamma (A;X) = \gamma (\pi (A);Y)\).

Proof

If \(\gamma (\pi (A);Y) = +\infty \), then the inequality \(\gamma (A;X) \le \gamma (\pi (A);Y)\) is trivial. Assume that \(k=\gamma (\pi (A);Y) < +\infty \). By the definition (1.3) of \(\gamma (\pi (A);Y)\), there exists an odd mapping \(h \in C(\pi (A);{\mathbb {R}}^k {\setminus }\{0\})\). Since \(\pi \) is odd and continuous, we see that \(h \circ \pi \) is odd and \(h \circ \pi \in C(A;{\mathbb {R}}^k {\setminus }\{0\})\). Therefore, \(h \circ \pi \) is admissible for the definition (1.3) of \(\gamma (A;X)\), which implies that \(\gamma (A;X) \le \gamma (\pi (A);Y)\). If, in addition, \(\pi ^{-1}: \pi (A) \rightarrow A\) is continuous, then the same arguments give \(\gamma (\pi (A);Y) \le \gamma (A;X)\), which yields the equality between genuses. \(\square \)

Remark A.2

Evidently, if the set A in Lemma A.1 is compact in X, then \(\pi (A)\) is compact in Y. We also refer to [31, Proposition 7.5: \(2^\circ \)] or [33, Chapter II, Proposition 5.4 (\(4^\circ \))] for the statement of Lemma A.1 in the case when X and Y coincide.

In view of the continuity of the canonical embedding \(i: W_0^{1,r}\rightarrow W_0^{1,q}\) for \(1<q<r\) defined as \(i(u)=u\), Lemma A.1 implies that

$$\begin{aligned} k \le \gamma (A;W_0^{1,r}) \le \gamma (A;W_0^{1,q}) \quad \text {for any}~ A \in \Sigma _k(r), \end{aligned}$$

which yields \(A \in \Sigma _k(q)\). A similar relation holds in the case \(q>r>1\). This leads to the following remark.

Remark A.3

The following assertions hold:

  1. (i)

    If \(1<q<r\), then \(\Sigma _k(q) \supset \Sigma _k(r)\) and hence \(\lambda _k(q) \le \lambda _k(q;r)\).

  2. (ii)

    If \(q>r>1\), then \(\Sigma _k(q) \subset \Sigma _k(r)\) and hence \(\lambda _k(q) \ge \lambda _k(q;r)\).

1.1 The case \(q<r\)

First, we show that \(\lambda _k(q) = \lambda _k(q;r)\) whenever \(q<r\), which therefore provides an alternative characterization of \(\lambda _k(q)\). In the case \(k=1\), this claim is simple thanks to the density of \(C_0^\infty (\Omega )\) in both \(W_0^{1,r}\) and \(W_0^{1,q}\), and our aim is to develop this approach for higher indices k.

Lemma A.4

Let \(\Omega \subset {\mathbb {R}}^N\) be a bounded domain, \(N \ge 1\). Let \(1<q<r\). Then \({\lambda }_k(q) = \lambda _k(q;r)\) for all \(k \in {\mathbb {N}}\).

Proof

We know from Remark A.3 (i) that \({\lambda }_k(q)\le \lambda _k(q;r)\) for all k. Suppose, by contradiction, that \({\lambda }_k(q) < \lambda _k(q;r)\) for some k. Consequently, there exists \(A \in \Sigma _k(q)\) such that

$$\begin{aligned} \lambda _k(q) \le \max _{u\in A} \frac{\Vert \nabla u\Vert _q^q}{\Vert u\Vert _q^q} < \lambda _k(q;r). \end{aligned}$$
(A.2)

To prove the lemma, we show the existence of an element of \(\Sigma _k(r)\) sufficiently close to A in the norm of \(W^{1,q}\), which will give a contradiction to (A.2).

Let us take any \(\varepsilon \in (0,\text {dist}_q(A,0)/2)\), where

$$\begin{aligned} \text {dist}_q(A,0) = \min _{u \in A}\Vert \nabla u\Vert _q > 0 \end{aligned}$$

since A is compact in \(W_0^{1,q}\) and does not contain 0. Let \(B_\varepsilon ^q(u)\) be an open ball in \(W_0^{1,q}\) of radius \(\varepsilon >0\) centered at u. Thanks to the compactness of A in \(W_0^{1,q}\), we can extract a finite symmetric subcover \(\{B_\varepsilon ^q(u_n) \cup B_\varepsilon ^q(-u_n)\}_{n=1}^K\) from a cover \(\cup _{u \in A}B_\varepsilon ^q(u)\), where \(K= K(\varepsilon ) \ge 1\).

For every \(n \in \{1,\dots ,K\}\) we choose some \(v_n \in C_0^\infty (\Omega ) \cap B_\varepsilon ^q(u_n)\). In particular, we have \(\Vert \nabla (u - v_n)\Vert _q < 2\varepsilon \) for any \(u \in B_\varepsilon ^q(u_n)\). Consider a closed finite dimensional linear subspace of \(W_0^{1,q}\) spanned by \(\{v_n\}_{n=1}^K\):

$$\begin{aligned} V = V(\varepsilon ) = \text {span} \{v_1,\dots ,v_K\}, \end{aligned}$$

and define the metric projection \(P_\varepsilon : W_0^{1,q} \mapsto V\) in the standard way:

$$\begin{aligned} \Vert \nabla (u-P_\varepsilon (u))\Vert _q = \inf _{v \in V}\Vert \nabla (u-v)\Vert _q, \quad u \in W_0^{1,q}. \end{aligned}$$

Our aim is to prove that \(P_\varepsilon (A) \in \Sigma _k(r)\), after a possible decrease in the value of \(\varepsilon \in (0,\text {dist}_q(A,0)/2)\). The operator \(P_\varepsilon \) is well defined in the sense that \(P_\varepsilon (u)\) exists and unique for any \(u \in W_0^{1,q}\), see, e.g., [32, Corollary 3.4 \((1^\circ )\), \((3^\circ )\), p. 111]. Moreover, \(P_\varepsilon \) is a continuous mapping, see, e.g., [32, Theorem 5.4, p. 251]. It is also clear that \(P_\varepsilon \) is odd, i.e., \(P_\varepsilon (-u)=-P_\varepsilon (u)\). As a consequence of the last two facts, we have \(\gamma (P_\varepsilon (A);W_0^{1,q}) \ge k\), see, e.g., Lemma A.1. The continuity of \(P_\varepsilon \) and the compactness of A in \(W_0^{1,q}\) imply that \(P_\varepsilon (A)\) is compact in \(W_0^{1,q}\). Moreover, \(0 \not \in P_\varepsilon (A)\) thanks to the upper bound on \(\varepsilon \). It is clear from the regularity of the basis elements of V that V is a closed finite dimensional linear subspace of \(W_0^{1,r}\), and hence \(P_\varepsilon (A) \subset W_0^{1,r}\). Since in the finite dimensional space V all norms are equivalent, we conclude that \(P_\varepsilon (A)\) is compact in \(W_0^{1,r}\). Applying Lemma A.1 with the inclusion mapping \(i:V \subset W_0^{1,q}\rightarrow W_0^{1,r}\) defined as \(i(u)=u\), we get \(\gamma (P_\varepsilon (A);W_0^{1,r}) = \gamma (P_\varepsilon (A);W_0^{1,q}) \ge k\), which finishes the proof that \(P_\varepsilon (A) \in \Sigma _k(r)\).

Finally, let us explicitly obtain an upper bound for the Rayleigh quotient for \(\lambda _k(q;r)\) to get a contradiction to (A.2). For any \(u \in A\) there exists \(n \in \{1,\dots ,K\}\) such that \(u \in B_\varepsilon ^q(u_n)\). By the triangle inequality and the definition of \(P_\varepsilon (u)\), we have

$$\begin{aligned} \left| \Vert \nabla u\Vert _q - \Vert \nabla P_\varepsilon (u)\Vert _q \right| \le \Vert \nabla (u-P_\varepsilon (u))\Vert _q = \inf _{v \in V}\Vert \nabla (u-v)\Vert _q \le \Vert \nabla (u-v_n)\Vert _q < 2\varepsilon , \nonumber \\ \end{aligned}$$
(A.3)

and hence

$$\begin{aligned} \Vert \nabla P_\varepsilon (u)\Vert _q \le \Vert \nabla u\Vert _q + 2\varepsilon \quad \text {for any}~ u \in A. \end{aligned}$$
(A.4)

The inequality (A.3) and the Poincaré inequality give

$$\begin{aligned} \left| \Vert u\Vert _q - \Vert P_\varepsilon (u)\Vert _q\right| \le \Vert u-P_\varepsilon (u)\Vert _q \le \lambda _1^{-1/q}(q) \, \Vert \nabla (u-P_\varepsilon (u))\Vert _q \le 2 \lambda _1^{-1/q}(q) \varepsilon \nonumber \\ \end{aligned}$$
(A.5)

for any \(u \in A\), which yields

$$\begin{aligned} 1 \le \frac{\Vert P_\varepsilon (u)\Vert _q}{\Vert u\Vert _q} + \frac{2 \lambda _1^{-1/q}(q)\varepsilon }{\Vert u\Vert _q}. \end{aligned}$$
(A.6)

Combining (A.4) and (A.6), we get

$$\begin{aligned} \Vert \nabla P_\varepsilon (u)\Vert _q \le \Vert \nabla u\Vert _q +2\varepsilon \le \Vert \nabla u\Vert _q \frac{\Vert P_\varepsilon (u)\Vert _q}{\Vert u\Vert _q} + \Vert \nabla u\Vert _q \frac{2 \lambda _1^{-1/q}(q)\varepsilon }{\Vert u\Vert _q} +2\varepsilon . \end{aligned}$$

Recalling that \(0 \not \in P_\varepsilon (A)\) and dividing by \(\Vert P_\varepsilon (u)\Vert _q\), we arrive at

$$\begin{aligned} \frac{\Vert \nabla P_\varepsilon (u)\Vert _q}{\Vert P_\varepsilon (u)\Vert _q} \le \frac{\Vert \nabla u\Vert _q}{\Vert u\Vert _q} + \frac{\Vert \nabla u\Vert _q}{\Vert u\Vert _q} \cdot \frac{2 \lambda _1^{-1/q}(q)\varepsilon }{\Vert P_\varepsilon (u)\Vert _q} + \frac{2\varepsilon }{\Vert P_\varepsilon (u)\Vert _q}. \end{aligned}$$
(A.7)

Moreover, we also deduce from (A.5) that

$$\begin{aligned} \Vert P_\varepsilon (u)\Vert _q \ge \Vert u\Vert _q - 2 \lambda _1^{-1/q}(q) \varepsilon \ge \min _{v \in A} \Vert v\Vert _q - 2 \lambda _1^{-1/q}(q) \varepsilon . \end{aligned}$$
(A.8)

Combining (A.7) and (A.8) and taking \(\varepsilon >0\) smaller if necessary, we conclude that

$$\begin{aligned} \lambda _k^{1/q}(q;r) \le \max _{u \in A}\frac{\Vert \nabla P_\varepsilon (u)\Vert _q}{\Vert P_\varepsilon (u)\Vert _q} \le \max _{u \in A} \frac{\Vert \nabla u\Vert _q}{\Vert u\Vert _q} + O(\varepsilon ) < \lambda _k^{1/q}(q;r), \end{aligned}$$

where the last inequality is given by our contradictory assumption (A.2). A contradiction. \(\square \)

Remark A.5

Lemma A.4 is needed for the proofs of Theorems 1.2 and 1.4 (see, more explicitly, the proof of Lemma 2.10), cf. [41].

1.2 The case \(q>r\)

Let us now discuss the relation between \(\lambda _k(q;r)\) and \({\lambda }_k(q)\) in the case \(q<r\), which is converse to that considered above. Although \(\lambda _k(q;r) \le {\lambda }_k(q)\) for all k (see Remark A.3 (ii)), the precise relation between \(\lambda _k(q;r)\) and \({\lambda }_k(q)\) heavily depends on the regularity of \(\Omega \) and it is closely connected to the problem of continuity of the mapping \(q \mapsto \lambda _k(q)\) from the left, see [26, Section 7], [13, 19, 28], and references therein. We provide two opposite results in this direction.

Lemma A.6

Let \(N \ge 2\) and \(1<r<q\). Let \(\Omega \subset {\mathbb {R}}^N\) be a bounded domain such that

$$\begin{aligned} W_0^{1,q_-}:= W^{1,q} \cap \bigcap _{1<s<q} W_0^{1,s} \ne W_0^{1,q}. \end{aligned}$$
(A.9)

Then \(\lambda _k(q;r) < {\lambda }_k(q)\) for any \(k \in {\mathbb {N}}\).

Proof

It is not hard to observe that \(W_0^{1,q_-}\) is a closed vector subspace of \(W^{1,q}\) satisfying \(W_0^{1,q} \subset W_0^{1,q_-} \subset W_0^{1,r}\) for any \(r<q\), see, e.g., [13, Proposition 2.1]. Define

$$\begin{aligned} {\underline{\lambda }}_k(q) = \inf \left\{ \max _{u\in A} \frac{\Vert \nabla u\Vert _q^q}{\Vert u\Vert _q^q}:~ A\in {\Sigma }_k(q_-) \right\} , \end{aligned}$$

where

$$\begin{aligned} \Sigma _k(q_-) =\left\{ \, A\subset W_0^{1,q_-} \setminus \{0\}:~ A\ \mathrm{is\ symmetric,\ compact\ in}\ W^{1,q},\ \textrm{and}\ \gamma (A;W^{1,q})\ge k\,\right\} . \end{aligned}$$

Using the continuous embedding \(i_1: W_0^{1,q}\rightarrow W^{1,q}\) defined as \(i_1(u)=u\), we apply Lemma A.1 to deduce that \(\Sigma _k(q) \subset \Sigma _k(q_-)\). In the same way, Lemma A.1 with the continuous embedding \(i_2: W^{1,q} \rightarrow W^{1,r}\) defined as \(i_2(u)=u\) yields \(\gamma (A;W^{1,r}) \ge \gamma (A;W^{1,q}) \ge k\) for any \(A \in \Sigma _k(q_-)\). Moreover, any such A is symmetric and compact in \(W_0^{1,r}\). Since the topologies induced by the norms of \(W^{1,r}\) and \(W_0^{1,r}\) are equivalent in \(W_0^{1,r}\), we conclude from Lemma A.1 that \(\gamma (A;W^{1,r})=\gamma (A;W_0^{1,r})\) for any \(A \in \Sigma _k(q_-)\). Therefore, \(\Sigma _k(q_-) \subset \Sigma _k(r)\). Consequently,

$$\begin{aligned} \lambda _k(q;r) \le {\underline{\lambda }}_k(q) \le \lambda _k(q). \end{aligned}$$
(A.10)

It follows from [13, Theorem 6.1 and Corollary 6.2] that \({\underline{\lambda }}_k(q) = \lambda _k(q)\) for \(k \ge 2\) if and only if \({\underline{\lambda }}_1(q) = \lambda _1(q)\). However, our assumption (A.9) is equivalent to \({\underline{\lambda }}_1(q) < \lambda _1(q)\), see [13, Theorem 4.1 (c), (d)]. Thus, we conclude from (A.10) that \(\lambda _k(q;r) \le {\underline{\lambda }}_k(q) < \lambda _k(q)\) for any \(k \in {\mathbb {N}}\). \(\square \)

Remark A.7

A domain \(\Omega \) satisfying the assumption (A.9), or, equivalently, \(\lim _{s \nearrow q} \lambda _1(s) < \lambda _1(q)\), was first constructed in [26, Section 7]. We refer to [13, 19] for further developments and for characterizations of the family of such domains.

Lemma A.8

Let \(N \ge 1\) and \(1<r<q\). Let \(\Omega \subset {\mathbb {R}}^N\) be a bounded domain such that

$$\begin{aligned} W^{1,q} \cap W_0^{1,r}= W_0^{1,q}. \end{aligned}$$
(A.11)

Then \({\lambda }_k(q) = \lambda _k(q;r)\) for all \(k \in {\mathbb {N}}\).

Proof

Let us take any \(\varepsilon >0\) and any \(A_\varepsilon \in \Sigma _k(r)\) such that \(A_\varepsilon \subset W^{1,q}\) and

$$\begin{aligned} \sup _{u\in A_\varepsilon } \frac{\Vert \nabla u\Vert _q^q}{\Vert u\Vert _q^q} \le \lambda _k(q;r) + \varepsilon . \end{aligned}$$
(A.12)

It is known from [8] (see, more precisely, [8, Eq. (2.3) and Corollary 3.6]) that \(\lambda _k(q)\) can be equivalently defined as

$$\begin{aligned} \lambda _k(q) = \min \left\{ \sup _{u\in A} \frac{\Vert \nabla u\Vert _q^q}{\Vert u\Vert _q^q}:~ A\in {\mathcal {G}}_k(q) \right\} , \end{aligned}$$
(A.13)

where

$$\begin{aligned}&{\mathcal {G}}_k(q) \\&=\left\{ \, A\subset W_0^{1,q} \setminus \{0\}:~ A\ \mathrm{is\ symmetric,\ closed \ and \ bounded\ in}\ W^{1,q}_0,\ \textrm{and}\ \gamma (A; L^q)\ge k\,\right\} . \end{aligned}$$

Our aim is to show that \(A_\varepsilon \in {\mathcal {G}}_k(q)\), i.e., \(A_\varepsilon \) is admissible for the definition (A.13) of \(\lambda _k(q)\). If it is true, then \(\lambda _k(q) \le \lambda _k(q;r)+\varepsilon \) in view of (A.12). Since \(\varepsilon >0\) is chosen arbitrarily, we get \(\lambda _k(q) \le \lambda _k(q;r)\). On the other hand, we have \(\lambda _k(q;r) \le {\lambda }_k(q)\) by Remark A.3 (ii), which gives the desired conclusion of the lemma. (If we suppose that for any \(\varepsilon >0\) there exists \(A_\varepsilon \) which is compact in \(W_0^{1,q}\), then the above argument applies to the original definition (1.1) of \(\lambda _k(q)\) instead of (A.13), which would give the result in a simpler way.)

Therefore, let us justify that \(A_\varepsilon \in {\mathcal {G}}_k(q)\). By the assumption (A.11), we have \(A_\varepsilon \subset W_0^{1,q}\). Since \(r<q\) and \(A_\varepsilon \subset W_0^{1,r}{\setminus } \{0\}\) is compact in \(W_0^{1,r}\), we get \(A_\varepsilon \subset W_0^{1,q}{\setminus } \{0\}\). The set \(A_\varepsilon \) is bounded in \(W_0^{1,q}\). Indeed, we have from (A.12) that

$$\begin{aligned} \Vert \nabla v\Vert _q^q \le (\lambda _k(q;r) + \varepsilon ) \Vert v\Vert _q^q \quad \text {for any}~ v \in A_\varepsilon , \end{aligned}$$

and hence [35, Lemma 9] and the Poincaré inequality give the existence of a constant \(C>0\) such that

$$\begin{aligned} \Vert \nabla v\Vert _q \le C \Vert v\Vert _r \le C \lambda _1^{-1/r}(r) \Vert \nabla v\Vert _r \le C \lambda _1^{-1/r}(r) \, \max _{u \in A_\varepsilon } \Vert \nabla u\Vert _r <+\infty \quad \text {for any}~ v \in A_\varepsilon . \nonumber \\ \end{aligned}$$
(A.14)

Moreover, \(A_\varepsilon \) is closed in \(W_0^{1,q}\). To show this, let us take any sequence \(\{u_n\} \subset A_\varepsilon \) which strongly converges in \(W_0^{1,q}\) to a function \(u_0 \in W_0^{1,q}\). By the compactness of \(A_\varepsilon \) in \(W_0^{1,r}\) and the assumption \(r<q\), we see that \(u_0 \in W_0^{1,r}{\setminus } \{0\}\) and \(u_n \rightarrow u_0\) strongly in \(W_0^{1,r}\), and so \(u_0 \in A_\varepsilon \), which gives the desired closedness of \(A_\varepsilon \) in \(W_0^{1,q}\).

It remains to prove that \(\gamma (A_\varepsilon ; L^q)\ge k\). Consider the mapping \(i: A_\varepsilon \subset W_0^{1,r}\rightarrow L^q\) defined as \(i(u)=u\). This mapping is continuous. (This claim is trivial when q does not exceed the critical Sobolev exponent \(r^*\).) Indeed, let us take any sequence \(\{u_n\} \subset A_\varepsilon \) which converges to some \(u_0 \in A_\varepsilon \) strongly in \(W_0^{1,r}\). Since \(A_\varepsilon \) is bounded in \(W_0^{1,q}\), we see that any subsequence of \(\{u_n\}\) has a subsubsequence which converges to \(u_0\) weakly in \(W_0^{1,q}\) and hence strongly in \(L^q\). Therefore, the whole sequence \(\{u_n\}\) also converges to \(u_0\) strongly in \(L^q\), and hence i is continuous. Since i is odd, we apply Lemma A.1 to get \(\gamma (A_\varepsilon ; L^q)\ge \gamma (A_\varepsilon ; W_0^{1,r}) \ge k\).

Thus, we conclude that \(A_\varepsilon \in {\mathcal {G}}_k(q)\), which finishes the proof. \(\square \)

Remark A.9

We refer to [19, Sections 3 and 4] for several assumptions equivalent to/sufficient for (A.11). In particular, if \(\Omega \) is Lipschitz (in the case \(N \ge 2\)), then (A.11) holds, see [19, Remarks (ii), p. 252]. Moreover, it is clear that (A.11) is satisfied when \(N=1\).

Relation between \(\lambda _k(q)\) and \(\beta _*\)

The aim of this section is to show that, for an appropriate domain \(\Omega \subset {\mathbb {R}}^N\) with \(N \ge 2\), the assumptions (ii), (iii), (iv) of Theorem 1.2 can be satisfied for \(k \ge 2\). Throughout this section, in order to represent the dependence of quantities on a domain \(\Omega \), we will use the expanded notation \(\beta _*(\Omega )\), \(\beta _*(\alpha ;\Omega )\), \(\lambda _k(q;\Omega )\) for \(\beta _*\), \(\beta _*(\alpha )\), \(\lambda _k(q)\), respectively. In particular, recall the definition of \(\beta _*(\Omega )\), see (1.6):

$$\begin{aligned} \beta _*(\Omega ) = \frac{\Vert \nabla \varphi _p\Vert _q^q}{\Vert \varphi _p\Vert _q^q}. \end{aligned}$$

Lemma B.1

Let \(1<q<p\), \(N \ge 2\), and \(k \ge 2\). Then there exists a bounded \(C^2\)-smooth domain \(\Omega \subset {\mathbb {R}}^N\) such that \(\lambda _k(q;\Omega ) < \beta _*(\Omega )\).

Proof

Let us construct a beads-type domain \(\Omega _\varepsilon \) as follows. Take k points in \({\mathbb {R}}^N\) lying on the \(x_1\)-axis:

$$\begin{aligned} z_j = (j, 0, \dots , 0), \quad j = 1,\dots ,k. \end{aligned}$$

Denote by \(\Omega _0\) the union over j of open balls \(B_r(z_j)\) of radius \(r \in (0,1/2)\) centered at \(z_j\). Thanks to the choice of r, these balls are disjoint. Let us now consider a domain \(\Omega _\varepsilon \) as the union of \(\Omega _0\) with a set of \(k-1\) thin cylindrical type channels \(T_{j,\varepsilon }\) of maximal width \(\varepsilon >0\) subsequently connecting the balls \(B_r(z_j)\) and \(B_r(z_{j+1})\) in a \(C^2\)-smooth way, so that \(\Omega _\varepsilon \) is of class \(C^2\) and \(\Omega _{\varepsilon _1} \supset \Omega _{\varepsilon _2}\) provided \(\varepsilon _1> \varepsilon _2>0\), see Fig. 3. For instance, one can take

$$\begin{aligned} T_{j,\varepsilon } = \{ (x_1,\dots ,x_N) \in {\mathbb {R}}^N:~ j+r-\varepsilon< x_1< j+1-r+\varepsilon ,~ x_2^2+\dots +x_{N}^2 < g_\varepsilon ^2(x_1) \}, \end{aligned}$$

where \(\{g_\varepsilon \}\) is an appropriate family of smooth positive functions in the interval \([1,k+1]\) satisfying \(\max _{s \in [1,k+1]}g_\varepsilon (s) \rightarrow 0\) as \(\varepsilon \rightarrow 0\), and \(g_{\varepsilon _1} > g_{\varepsilon _2}\) provided \(\varepsilon _1> \varepsilon _2>0\), so that \(T_{j,\varepsilon _1} \supset T_{j,\varepsilon _2}\).

Fig. 3
figure 3

A possible shape of \(\Omega _\varepsilon \) for \(k=2\) and some \(\varepsilon >0\)

Evidently, we have \(\lambda _1(q;B_r(z_i)) = \lambda _1(q;B_r(z_j))\) for any \(i,j \in \{1,\dots ,k\}\), and when there is no ambiguity, we denote, for short,

$$\begin{aligned} \lambda _1(q;B_r) = \lambda _1(q;B_r(z_j)). \end{aligned}$$

Our aim is to prove that \(\lambda _k(q; \Omega _\varepsilon ) < \beta _*(\Omega _\varepsilon )\) for any sufficiently small \(\varepsilon >0\). First, let us show that

$$\begin{aligned} \lambda _1(q;\Omega _\varepsilon ) \le \lambda _2(q;\Omega _\varepsilon ) \le \dots \le \lambda _k(q;\Omega _\varepsilon ) \le \lambda _1(q;B_r). \end{aligned}$$
(B.1)

For this purpose, denote by \(\varphi _{q,j} \in W_0^{1,q}(B_r(z_j)) \cap C^1(\overline{B_r(z_j)})\) the first eigenfunction corresponding to \(\lambda _1(q;B_r(z_j))\). Extending \(\varphi _{q,j}\) by zero outside of \(B_r(z_j)\), we have \(\varphi _{q,j} \in W_0^{1,q}(\Omega _\varepsilon )\). Let us consider the following subset of \(W_0^{1,q}(\Omega _\varepsilon )\):

$$\begin{aligned} A = \{a_1 \varphi _{q,1} + \ldots + a_k \varphi _{q,k}:~ a_1,\dots ,a_k \in {\mathbb {R}},~ |a_1|^q + \ldots + |a_k|^q = 1\}. \end{aligned}$$

It is clear that A is symmetric and compact. Moreover, the mapping

$$\begin{aligned} a_1 \varphi _{q,1} + \ldots + a_k \varphi _{q,k} \mapsto (a_1,\dots ,a_k) \end{aligned}$$

is continuous and odd, and hence \(\gamma (A;W_0^{1,q}) = k\), see [31, Proposition 7.7]. Therefore, A is an admissible set for the definition (1.1) of \(\lambda _k(q;\Omega _\varepsilon )\). Since \(\varphi _{q,i}\) and \(\varphi _{q,j}\) have disjoint supports and equal norms when \(i \ne j\), and

$$\begin{aligned} \int _{\Omega _\varepsilon }|\nabla \varphi _{q,j}|^q \,dx = \lambda _1(q;B_r) \int _{\Omega _\varepsilon }|\varphi _{q,j}|^q \,dx, \quad j =1,\dots ,k, \end{aligned}$$

we have

$$\begin{aligned}&\lambda _k(q;\Omega _\varepsilon ) \\&\quad \le \max _{u \in A} \frac{\int _{\Omega _\varepsilon }|\nabla u|^q \,dx}{\int _{\Omega _\varepsilon }|u|^q \,dx} = \max \left\{ \frac{\int _{\Omega _\varepsilon }|\nabla (a_1 \varphi _{q,1} + \ldots + a_k \varphi _{q,k})|^q \,dx}{\int _{\Omega _\varepsilon }|a_1 \varphi _{q,1} + \ldots + a_k \varphi _{q,k}|^q \,dx} : |a_1|^q + \ldots + |a_k|^q = 1 \right\} \\&\quad = \max \left\{ \frac{|a_1|^q \int _{\Omega _\varepsilon }|\nabla \varphi _{q,1}|^q \,dx + \ldots + |a_k|^q \int _{\Omega _\varepsilon }|\nabla \varphi _{q,k}|^q \,dx}{|a_1|^q \int _{\Omega _\varepsilon }|\varphi _{q,1}|^q \,dx + \ldots + |a_k|^q \int _{\Omega _\varepsilon }|\varphi _{q,k}|^q \,dx} : |a_1|^q + \ldots + |a_k|^q = 1 \right\} = \lambda _1(q;B_r), \end{aligned}$$

which establishes the chain of inequalities (B.1). Exactly the same construction but in the space \(W_0^{1,p}(\Omega _0)\) instead of \(W_0^{1,q}(\Omega _\varepsilon )\) shows that

$$\begin{aligned} \lambda _1(p;\Omega _0) = \lambda _2(p;\Omega _0) = \dots = \lambda _k(p;\Omega _0) = \lambda _1(p;B_r). \end{aligned}$$
(B.2)

As it can be seen from (B.1), in order to prove the lemma, it is sufficient to justify that

$$\begin{aligned} \lambda _1(q;B_r) < \beta _*(\Omega _\varepsilon ) \quad \text {for any sufficiently small}~ \varepsilon >0. \end{aligned}$$
(B.3)

Hereinafter, we assume that \(j \in \{1,\dots ,k\}\) is fixed and we denote \(B_r:= B_r(z_j)\), for brevity. We will prove (B.3) by noting that \(\lambda _1(q;B_r) < \beta _*(B_r)\) (see Sect. 1.1) and showing that

$$\begin{aligned} \beta _*(B_r) = \beta _*(\Omega _0) \le \beta _*(\Omega _\varepsilon ) - o(1). \end{aligned}$$

Let us recall from Sect. 1.1 that \(\beta _*(\Omega _\varepsilon )\) for any \(\varepsilon \ge 0\) can be characterized as

$$\begin{aligned} \beta _*(\Omega _\varepsilon )&= \beta _*(\lambda _1(p;\Omega _\varepsilon ); \Omega _\varepsilon ) \nonumber \\&= \inf \Bigg \{ \frac{\int _{\Omega _\varepsilon }|\nabla u|^q \,dx}{\int _{\Omega _\varepsilon }|u|^q \,dx}: ~ u \in W_0^{1,p}(\Omega _\varepsilon ) \setminus \{0\},\int _{\Omega _\varepsilon }|\nabla u|^p \,dx - \lambda _1(p;\Omega _\varepsilon ) \int _{\Omega _\varepsilon }|u|^p \,dx \le 0 \Bigg \}. \end{aligned}$$
(B.4)

In particular, taking the first eigenfunction \(\varphi _{p,j}\) corresponding to \(\lambda _1(p;B_r)\) as a test function for (B.4) with \(\varepsilon =0\) and using (B.2), it is not hard to deduce that \(\beta _*(\Omega _0) = \beta _*(B_r)\).

Recall from Sect. 1.1 that the mapping \(\alpha \mapsto \beta _*(\alpha ;\Omega _\varepsilon )\) does not increase. Therefore, noting that \(\lambda _1(p;B_r) > \lambda _1(p;\Omega _\varepsilon )\) since \(B_r \subsetneq \Omega _\varepsilon \), we get

$$\begin{aligned} \beta _*(\lambda _1(p;B_r); \Omega _\varepsilon ) \le \beta _*(\lambda _1(p;\Omega _\varepsilon ); \Omega _\varepsilon ) \equiv \beta _*(\Omega _\varepsilon ). \end{aligned}$$
(B.5)

Let us investigate the behavior of \(\beta _*(\lambda _1(p;B_r); \Omega _\varepsilon )\) with respect to \(\varepsilon \). The first eigenfunction \(\varphi _{p,j}\) corresponding to \(\lambda _1(p;B_r)\), being extended by zero outside of \(B_r\) so that \(\varphi _{p,j} \in W_0^{1,p}(\Omega _\varepsilon )\), is an admissible test function for the definition (1.5) of \(\beta _*(\lambda _1(p;B_r); \Omega _\varepsilon )\), and hence

$$\begin{aligned} \beta _*(\lambda _1(p;B_r); \Omega _\varepsilon ) \le \frac{\int _{\Omega _\varepsilon }|\nabla \varphi _{p,j}|^q \,dx}{\int _{\Omega _\varepsilon }|\varphi _{p,j}|^q \,dx} = \frac{\int _{B_r} |\nabla \varphi _{p,j}|^q \,dx}{\int _{B_r} |\varphi _{p,j}|^q \,dx} = \beta _*(B_r) = \beta _*(\Omega _0). \end{aligned}$$

We want to show that

$$\begin{aligned} \lim _{\varepsilon \searrow 0} \beta _*(\lambda _1(p;B_r); \Omega _\varepsilon ) = \beta _*(\Omega _0). \end{aligned}$$
(B.6)

Suppose, by contradiction, that

$$\begin{aligned} \liminf _{\varepsilon \searrow 0} \beta _*(\lambda _1(p;B_r); \Omega _\varepsilon ) < \beta _*(\Omega _0). \end{aligned}$$

Consequently, there exists a sequence \(\{u_\varepsilon \}\) such that \(u_\varepsilon \in W_0^{1,p}(\Omega _\varepsilon )\), \(\int _{\Omega _\varepsilon }|u_\varepsilon |^q \,dx = 1\),

$$\begin{aligned} \int _{\Omega _\varepsilon }|\nabla u_\varepsilon |^p \,dx - \lambda _1(p;B_r) \int _{\Omega _\varepsilon }|u_\varepsilon |^p \,dx \le 0, \end{aligned}$$
(B.7)

and

$$\begin{aligned} \liminf _{\varepsilon \searrow 0} \int _{\Omega _\varepsilon }|\nabla u_\varepsilon |^q \,dx < \beta _*(\Omega _0). \end{aligned}$$
(B.8)

By the construction, we have \(\Omega _{\varepsilon _2} \subset \Omega _{\varepsilon _1}\) provided \(0<\varepsilon _2 < \varepsilon _1\), which yields \(W_0^{1,p}(\Omega _{\varepsilon _2}) \subset W_0^{1,p}(\Omega _{\varepsilon _1})\). Therefore, extending \(u_\varepsilon \) by zero outside of \(\Omega _\varepsilon \), we get \(u_\varepsilon \in W_0^{1,p}(\Omega _{\varepsilon _1})\) for a fixed \(\varepsilon _1>0\) and all \(\varepsilon \in (0,\varepsilon _1)\). In view of (B.8), \(\{u_\varepsilon \}\) is bounded in \(W_0^{1,p}(\Omega _{\varepsilon _1})\) and hence there exists \(u_0 \in W_0^{1,p}(\Omega _{\varepsilon _1})\) such that \(u_\varepsilon \rightarrow u_0\) weakly in \(W_0^{1,p}(\Omega _{\varepsilon _1})\) and \(W_0^{1,q}(\Omega _{\varepsilon _1})\), strongly in \(L^p(\Omega _{\varepsilon _1})\) and \(L^q(\Omega _{\varepsilon _1})\), and a.e. in \({\mathbb {R}}^N\), up to a subsequence.

By the construction, we have \(u_0 = 0\) a.e. in \({\mathbb {R}}^N {\setminus } \overline{\Omega _0}\). Indeed, if we suppose that \(u_0 \ne 0\) in some set \({\mathcal {O}} \subset {\mathbb {R}}^N {\setminus } \overline{\Omega _0}\) with positive measure \(|{\mathcal {O}}|>0\), then there exists \(\varepsilon _0>0\) and a channel \(T_{l,\varepsilon _0}\) (which connects \(B_r(z_l)\) with \(B_r(z_{l+1})\)) of maximal width \(\varepsilon _0\) such that \(|{\mathcal {O}} \cap T_{l,\varepsilon _0}| > 0\). Since the channel shrinks to a line as \(\varepsilon \rightarrow 0\), we see that \(|{\mathcal {O}} \cap \left( {\mathbb {R}}^N {\setminus } T_{l,\varepsilon }\right) | > 0\) for any sufficiently small \(\varepsilon >0\), which means that \(|{\mathcal {O}} \cap \left( {\mathbb {R}}^N {\setminus } \Omega _\varepsilon \right) | > 0\). However, this is impossible since \(u_\varepsilon \in W_0^{1,p}(\Omega _\varepsilon )\) and it is extended by zero outside of \(\Omega _\varepsilon \), and \(u_\varepsilon \rightarrow u_0\) a.e. in \({\mathbb {R}}^N\). Therefore, we have \(u_0 \in W_0^{1,p}(\Omega _0)\), see, e.g., [37, Corollary 3.3] for an explicit reference.

The strong convergence in \(L^q(\Omega _{\varepsilon _1})\) yields

$$\begin{aligned} 1 = \int _{\Omega _\varepsilon }|u_\varepsilon |^q \,dx = \int _{\Omega _{\varepsilon _1}} |u_\varepsilon |^q \,dx \rightarrow \int _{\Omega _{\varepsilon _1}} |u_0|^q \,dx = \int _{\Omega _{0}} |u_0|^q \,dx ~~\text {as}~ \varepsilon \searrow 0, \end{aligned}$$
(B.9)

and so \(u_0 \not \equiv 0\) in \(\Omega _{0}\). Applying also the weak convergence in \(W_0^{1,p}(\Omega _{\varepsilon _1})\) and the strong convergence in \(L^p(\Omega _{\varepsilon _1})\), we obtain

$$\begin{aligned}&\int _{\Omega _{0}} |\nabla u_0|^p \,dx - \lambda _1(p;B_r) \int _{\Omega _{0}} |u_0|^p \,dx \\&\quad = \int _{\Omega _{\varepsilon _1}} |\nabla u_0|^p \,dx - \lambda _1(p;B_r) \int _{\Omega _{\varepsilon _1}} |u_0|^p \,dx \\&\quad \le \liminf _{\varepsilon \searrow 0} \left( \int _{\Omega _{\varepsilon _1}} |\nabla u_\varepsilon |^p \,dx - \lambda _1(p;B_r) \int _{\Omega _{\varepsilon _1}} |u_\varepsilon |^p \,dx \right) \\&\quad = \liminf _{\varepsilon \searrow 0} \left( \int _{\Omega _\varepsilon }|\nabla u_\varepsilon |^p \,dx - \lambda _1(p;B_r) \int _{\Omega _\varepsilon }|u_\varepsilon |^p \,dx \right) \le 0, \end{aligned}$$

where the last inequality follows from (B.7). Thus, we have shown that \(u_0\) is an admissible function for the definition (B.4) of \(\beta _*(\Omega _0)\), and hence, using (B.8) and (B.9), we arrive at the following contradiction:

$$\begin{aligned} \beta _*(\Omega _0) \le \frac{\int _{\Omega _0}|\nabla u_0|^q \,dx}{\int _{\Omega _0}|u_0|^q \,dx} = \int _{\Omega _0}|\nabla u_0|^q \,dx&\le \liminf _{\varepsilon \searrow 0} \int _{\Omega _{\varepsilon _1}} |\nabla u_\varepsilon |^q \,dx \\&= \liminf _{\varepsilon \searrow 0} \int _{\Omega _\varepsilon }|\nabla u_\varepsilon |^q \,dx < \beta _*(\Omega _0). \end{aligned}$$

Therefore, the convergence (B.6) is established.

Combining now (B.5) and (B.6), we see that

$$\begin{aligned} \beta _*(\Omega _0) + o(1) \le \beta _*(\Omega _\varepsilon ). \end{aligned}$$

That is, we obtain the desired relation

$$\begin{aligned} \lambda _1(q;B_r) < \beta _*(B_r) = \beta _*(\Omega _0) \le \beta _*(\Omega _\varepsilon ) - o(1), \end{aligned}$$

which justifies (B.3). Finally, combining (B.3) and (B.1), we complete the proof of the lemma. \(\square \)

Remark B.2

Essentially the same proof shows the existence of a smooth bounded domain \(\Omega \subset {\mathbb {R}}^N\) such that \(\lambda _l(p) < \alpha _*\) for given \(N \ge 2\) and \(l \ge 2\). We do not provide further details since this inequality can be observed already in the case \(N=1\), see [6, Lemma A.3].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobkov, V., Tanaka, M. Abstract multiplicity results for (pq)-Laplace equations with two parameters. Rend. Circ. Mat. Palermo, II. Ser (2024). https://doi.org/10.1007/s12215-024-01067-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12215-024-01067-7

Keywords

Mathematics Subject Classification

Navigation