Skip to main content
Log in

Weighted numerical range and weighted numerical radius for even-order tensor via Einstein product

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

The main aim of this article is to introduce the weighted numerical range and the weighted numerical radius for an even-order square tensor via the Einstein product and establish their various properties. Also, the proof of convexity of the numerical range of a tensor is revisited. The notions of weighted unitary tensor, weighted positive definite tensor, and weighted positive semi-definite tensor are then discussed. The spectral decomposition for normal tensors is also provided. This is then used to present the equality between the weighted numerical radius and the spectral radius of a weighted normal tensor. As applications of the above fact, a few equalities of weighted numerical radius and weighted tensor norm are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availibility

Data sharing is not applicable to this article as no new data is analyzed in this study.

References

  1. Axelsson, O., Lu, H., Polman, B.: On the numerical radius of matrices and its application to iterative solution methods. Linear Multilinear Algebra 37, 225–238 (1994)

    Article  MathSciNet  Google Scholar 

  2. Be, A., Shekhar, V., Mishra, D.: Numerical range for weighted Moore–Penrose inverse of tensor. Electron. J. Linear Algebra 40, 140–171 (2024)

    Article  MathSciNet  Google Scholar 

  3. Behera, R., Maji, S., Mohapatra, R.N.: Weighted Moore–Penrose inverses of arbitrary-order tensors. Comput. Appl. Math. 39, 284 (2020)

    Article  MathSciNet  Google Scholar 

  4. Bonsall, F.F., Duncan, J.: Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras. Cambridge University Press, Cambridge (1971)

    Book  Google Scholar 

  5. Bonsall, F.F., Duncan, J.: Numerical Ranges II. Cambridge University Press, Cambridge (1973)

    Book  Google Scholar 

  6. Brazell, M., Li, N., Navasca, C., Tamon, C.: Solving multilinear systems via tensor inversion. SIAM J. Matrix Anal. Appl. 34, 542–570 (2013)

    Article  MathSciNet  Google Scholar 

  7. Che, M., Wei, Y.: Theory and Computation of Complex Tensors and Its Applications. Springer, Singapore (2020)

    Book  Google Scholar 

  8. Chen, Y., Wei, Y.: Numerical radius for the asymptotic stability of delay differential equations. Linear Multilinear Algebra 65, 2306–2315 (2017)

    Article  MathSciNet  Google Scholar 

  9. Cheng, S.H., Higham, N.J.: The nearest definite pair for the Hermitian generalized eigenvalue problem. Linear Algebra Appl. 302(303), 63–76 (1999)

    Article  MathSciNet  Google Scholar 

  10. Dehdezi, E.K., Karimi, S.: On finding strong approximate inverses for tensors. Numer. Linear Algebra Appl. 30, e2460 (2023)

    Article  MathSciNet  Google Scholar 

  11. Du, H., Wang, B., Ma, H.: Perturbation theory for core and core-EP inverses of tensor via Einstein product. Filomat 33, 5207–5217 (2019)

    Article  MathSciNet  Google Scholar 

  12. Eiermann, M.: Field of values and iterative methods. Linear Algebra Appl. 180, 167–197 (1993)

    Article  MathSciNet  Google Scholar 

  13. Einstein, A.: The foundation of the general theory of relativity. In: Kox, A.J., Klein, M.J., Schulmann, R. (eds.) The Collected Papers of Albert Einstein, vol. 6, pp. 146–200. Princeton University Press, Princeton (2007)

    Google Scholar 

  14. Fiedler, M.: Numerical range of matrices and Levinger’s theorem. Linear Algebra Appl. 220, 171–180 (1995)

    Article  MathSciNet  Google Scholar 

  15. Goldberg, M., Tadmor, E.: On the numerical radius and its applications. Linear Algebra Appl. 42, 263–284 (1982)

    Article  MathSciNet  Google Scholar 

  16. Gustafson, K.E., Rao, D.K.M.: Numerical Range: The Field of Values of Linear Operators and Matrices. Springer-Verlag, New York (1997)

    Book  Google Scholar 

  17. Halmos, P.R.: A Hilbert Space Problem Book. Von Nostrand, New York (1967)

    Google Scholar 

  18. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  19. Ji, J., Wei, Y.: Weighted Moore-Penrose inverses and fundamental theorem of even-order tensors with Einstein product. Front. Math. China 12, 1319–1337 (2017)

    Article  MathSciNet  Google Scholar 

  20. Ji, J., Wei, Y.: The Drazin inverse of an even-order tensor and its application to singular tensor equations. Comput. Math. Appl. 75, 3402–3413 (2018)

    Article  MathSciNet  Google Scholar 

  21. Ji, J., Wei, Y.: The outer generalized inverse of an even-order tensor with the Einstein product through the matrix unfolding and tensor folding. Electron. J. Linear Algebra 36, 599–615 (2020)

    Article  MathSciNet  Google Scholar 

  22. Ke, R., Li, W., Ng, M.K.: Numerical ranges of tensors. Linear Algebra Appl. 508, 100–132 (2016)

    Article  MathSciNet  Google Scholar 

  23. Kirkland, S., Psarrakos, P.J., Tsatsomeros, M.J.: On the location of the spectrum of hypertournament matrices. Linear Algebra Appl. 323, 37–49 (2001)

    Article  MathSciNet  Google Scholar 

  24. Lai, W.M., Rubin, D., Krempl, E.: Introduction to Continuum Mechanics. Butterworth-Heinemann, Oxford (2009)

    Google Scholar 

  25. Liang, M., Zheng, B., Zhao, R.: Tensor inversion and its application to the tensor equations with Einstein product. Linear Multilinear Algebra 67, 843–870 (2018)

    Article  MathSciNet  Google Scholar 

  26. Liang, M., Zheng, B.: Further results on Moore-Penrose inverses of tensors with application to tensor nearness problems. Comput. Math. Appl. 77, 1282–1293 (2019)

    Article  MathSciNet  Google Scholar 

  27. Ma, H., Li, N., Stanimirović, P.S., Katsikis, V.N.: Perturbation theory for Moore-Penrose inverse of tensor via Einstein product. Comput. Appl. Math. 38, 111 (2019)

    Article  MathSciNet  Google Scholar 

  28. Maroulas, J., Psarrakos, P.J., Tsatsomeros, M.J.: Perron–Frobenius type results on the numerical range. Linear Algebra Appl. 348, 49–62 (2002)

    Article  MathSciNet  Google Scholar 

  29. Miao, Y., Qi, L., Wei, Y.: Generalized tensor function via the tensor singular value decomposition based on the \(T\)- product. Linear Algebra Appl. 590, 258–303 (2020)

    Article  MathSciNet  Google Scholar 

  30. Miao, Y., Wei, Y., Chen, Z.: Fourth-order tensor Riccati equations with the Einstein product. Linear Multilinear Algebra 70, 1831–1853 (2022)

    Article  MathSciNet  Google Scholar 

  31. Morris, S.A.: Topology Without Tears. University of New England (1989)

    Google Scholar 

  32. Pakmanesh, M., Afshin, H.: Numerical ranges of even-order tensor. Banach J. Math. Anal. 15, 59 (2021)

    Article  MathSciNet  Google Scholar 

  33. Pakmanesh, M., Afshin, H.: \(M\)-numerical ranges of odd-order tensors based on operators. Ann. Funct. Anal. 13, 37 (2022)

    Article  MathSciNet  Google Scholar 

  34. Pandey, D., Leib, H.: The tensor multilinear channel and its Shannon capacity. IEEE Access 10, 34907–34944 (2022)

    Article  Google Scholar 

  35. Panigrahy, K., Mishra, D.: Extension of Moore–Penrose inverse of tensor via Einstein product. Linear Multilinear Algebra 70, 750–773 (2020)

    Article  MathSciNet  Google Scholar 

  36. Panigrahy, K., Mishra, D.: Reverse-order law for weighted Moore–Penrose inverse of tensors. Adv. Oper. Theory 5, 39–63 (2020)

    Article  MathSciNet  Google Scholar 

  37. Psarrakos, P.J., Tsatsomeros, M.J.: On the stability radius of matrix polynomials. Linear Multilinear Algebra 50, 151–165 (2002)

    Article  MathSciNet  Google Scholar 

  38. Rout, N.C., Panigrahy, K., Mishra, D.: A note on numerical ranges of tensors. Linear Multilinear Algebra 71, 2645–2669 (2023)

    Article  MathSciNet  Google Scholar 

  39. Stanimirović, P.S., Ćirić, M., Katsikis, V.N., Li, C., Ma, H.: Outer and (b, c) inverses of tensors. Linear Multilinear Algebra 68, 940–971 (2020)

    Article  MathSciNet  Google Scholar 

  40. Sun, L., Zheng, B., Bu, C., Wei, Y.: Moore–Penrose inverse of tensors via Einstein product. Linear Multilinear Algebra 64, 686–698 (2016)

    Article  MathSciNet  Google Scholar 

  41. Wang, B., Du, H., Ma, H.: Perturbation bounds for DMP and CMP inverses of tensors via Einstein product. Comput. Appl. Math. 39, 28 (2020)

    Article  MathSciNet  Google Scholar 

  42. Wang, Y., Wei, Y.: Generalized eigenvalue for even order tensors via Einstein product and its applications in multilinear control systems. Comput. Appl. Math. 41, 419 (2022)

    Article  MathSciNet  Google Scholar 

  43. Wei, Y., Ding, W.: Theory and Computation of Tensors. Multi-dimensional Arrays. Academic Press, Amsterdam (2016)

    Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for their useful suggestions. The first author acknowledges the support of the Council of Scientific and Industrial Research, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasisha Mishra.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Be, A., Mishra, D. Weighted numerical range and weighted numerical radius for even-order tensor via Einstein product. Rend. Circ. Mat. Palermo, II. Ser (2024). https://doi.org/10.1007/s12215-024-01016-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12215-024-01016-4

Keywords

Mathematics Subject Classification

Navigation