Skip to main content
Log in

Abstract

Using the Hutchinson–Barnsley approach, we provide another way to proving that a Ćirić–Reich–Rus type iterated function system (IFS) has a unique attractor than that taken by Miculescu and Mihail (J Fixed Point Theory Appl 18(2), 285–296, 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(\mathbb {N}_N\) :

The set of first N positive integers

\(\vee ,\bigvee \) :

\(\max \); \(\wedge \) := Finite index set

\((\mathcal {K},\rho )\) :

Metric space; \(\omega ,\upsilon \in \mathcal {K}\); \(P:(\mathcal {K},\rho )\rightarrow (\mathcal {K},\rho )\)

\(F_S\) :

\(\{\theta \in \mathcal {K}~|~P\theta =\theta \}\), \(\mathcal {K}_S\) := \(\mathcal {K}-F_S\)

\(\mathcal {H}(\mathcal {K})\) :

The set of all nonempty compact subsets of \(\mathcal {K}\)

\(\theta \in \Theta \in \mathcal {H}(\mathcal {K})\) :

\(P_H\Theta := {\bigcup ~\{P\theta \}} P_{H,k}\Theta := \underset{k\in \wedge }{\bigcup }\{P_k\theta \}\)

\((\mathcal {H}(\mathcal {K}),\sigma (\rho ))\) :

Hausdorff metric space

IFS:

Iterated function system

HB:

Hutchinson–Barnsley

CRR:

Ćirić–Reich–Rus

GP:

Generalized Picard

HR:

Hardy–Rogers

References

  1. Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math. 3, 133–181 (1922)

    Article  MathSciNet  Google Scholar 

  2. Edelstein, M.: An extension of Banach’s contraction principle. Proc. Am. Math. Soc. 12, 7–10 (1961)

    MathSciNet  Google Scholar 

  3. Rakotch, E.: A note on contractive mappings. Proc. Am. Math. Soc. 13, 459–465 (1962)

    Article  MathSciNet  Google Scholar 

  4. Boyd, D.W., Wong, J.S.W.: On nonlinear contractions. Proc. Am. Math. Soc. 20, 458–464 (1969)

    Article  MathSciNet  Google Scholar 

  5. Matkowski, J.: Integrable solutions of functional equations. Dissertationes Mathematicae vol. 127, pp. 1–68 (1975)

  6. Kannan, R.: Some results on fixed points-II. Am. Math. Mon. 76(4), 405–408 (1969)

    MathSciNet  Google Scholar 

  7. Reich, S.: Some remarks concerning contraction mappings. Can. Math. Bull. 14, 121–124 (1971)

    Article  MathSciNet  Google Scholar 

  8. Chatterjea, S.K.: Fixed-point theorems. C. R. Acad. Bulgare Sci. 25, 727–730 (1972)

    MathSciNet  Google Scholar 

  9. Hardy, G.E., Rogers, T.D.: A generalization of a fixed point theorem of Reich. Can. Math. Bull. 16, 201–206 (1973)

    Article  MathSciNet  Google Scholar 

  10. Rhoades, B.E.: A comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 226, 257–290 (1977)

    Article  MathSciNet  Google Scholar 

  11. Hutchinson, J.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  Google Scholar 

  12. Barnsley, M.F.: Fractals Everywhere. Academic Press, Dublin (1988) (2nd edn., Morgan Kaufmann 1993; 3rd edn., Dover Publications, 2012)

  13. Barnsley, M.F.: Fractal image compression. Notices Am. Math. Soc. 43, 657–662 (1996)

    MathSciNet  Google Scholar 

  14. Secelean, N.A.: The existence of the attractor of countable iterated function systems. Mediterr. J. Math. 9, 61–79 (2012)

    Article  MathSciNet  Google Scholar 

  15. Secelean, N.A.: Iterated function systems consisting of F-contractions. Fixed Point Theory Appl. 277(1), 1–13 (2013)

    MathSciNet  Google Scholar 

  16. Imdad, M., Alfapih, W.M., Khan, I.A.: Weak \(\theta \)-contractions and some fixed point results with applications to fractal theory. Adv Differ Equ. 439, 1–18 (2018)

    MathSciNet  Google Scholar 

  17. Pasupathi, R., Chand, A.K.B., Navascueś, M.A.: Cyclic iterated function systems. J. Fixed Point Theory Appl. 22(58), 1–17 (2020)

    MathSciNet  Google Scholar 

  18. Sahu, D.R., Chakraborty, A., Dubey, R.P.: K-iterated function system. Fractals 18(1), 139–144 (2010)

    Article  MathSciNet  Google Scholar 

  19. Xu, S., Cheng, S., Zhou, Z.: Reich’s iterated function systems and well-posedness via fixed point theory. Fixed Point Theory Appl. 71, 1–11 (2015)

    MathSciNet  CAS  Google Scholar 

  20. Dung, N.V., Petruşel, A.: On iterated function systems consisting of Kannan maps, Reich maps, Chatterjea type maps, and related results. J. Fixed Point Theory Appl. 19, 2271–2285 (2017)

    Article  MathSciNet  Google Scholar 

  21. Miculescu, R., Mihail, A.: Riech-type iterated function systems. J. Fixed Point Theory Appl. 18(2), 285–296 (2016)

    Article  MathSciNet  Google Scholar 

  22. Kifayat, U., Katiyar, S.K.: Generalized G-Hausdorff space and applications in fractals. Chaos Solitons Fractals 174, 113819 (2023)

    Article  MathSciNet  Google Scholar 

  23. Prithvi, B.V., Katiyar, S.K.: Comments on “Fractal set of generalized countable partial iterated function system with generalized contractions via partial Hausdorff metric’’. Topol. Appl. 341, 108687 (2024)

    Article  MathSciNet  Google Scholar 

  24. Kifayat, U., Katiyar, S.K.: Cylic weak \(\phi \) iterated function system. Topol. Algebra Appl. 10, 161–166 (2022)

    MathSciNet  Google Scholar 

  25. Prithvi, B.V., Katiyar, S.K.: Interpolative operators: fractal to Multivalued fractal. Chaos Solitons Fractals 164, 112449 (2022)

    Article  MathSciNet  Google Scholar 

  26. Georgescu, F., Miculescu, R., Mihail, A.: Hardy–Rogers type iterated function systems. Qual. Theory Dyn. Syst. 19(37), 1–13 (2020)

    MathSciNet  Google Scholar 

  27. Shouchuan Hu, Papageorgiou, N. S. : Handbook of multivalued analysis 1 (Kluwer Academic Publishers, New York, 1997)

  28. Debnath, P.: A new extension of Kannan’s fixed point theorem via F-contraction with application to integral equations. Asian Eur. J. Math. 15, 1–9 (2022)

    Article  MathSciNet  Google Scholar 

  29. Rus, I.A.: Picard operators and applications. Sci. Math. Jpn. 58, 191–219 (2003)

    MathSciNet  Google Scholar 

  30. Prithvi, B.V., Katiyar, S.K.: Revisiting fractal through nonconventional iterated function systems. Chaos Solitons Fractals 170, 113337 (2023)

    Article  MathSciNet  Google Scholar 

  31. Prithvi, B.V., Katiyar, S.K.: Generalized Kannan Maps with Application to Iterated Function System, Advanced Mathematical Analysis and Applications. Taylor & Francis Group, CRC Press, Boca Raton (2022)

    Google Scholar 

Download references

Acknowledgements

It is the authors’ sincere gratitude to editor Prof. Pasquale Vetro and the referee(s) for their careful review and suggestions for improvement. S. K. Katiyar acknowledges the financial support received from Dr. B. R. Ambedkar National Institute of Technology (NIT), Jalandhar, Punjab - 144011, India (Institute seed grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Katiyar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prithvi, B.V., Katiyar, S.K. Revisiting Ćirić–Reich–Rus type iterated function systems. Rend. Circ. Mat. Palermo, II. Ser (2024). https://doi.org/10.1007/s12215-024-01005-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12215-024-01005-7

Keywords

Mathematics Subject Classification

Navigation