Skip to main content
Log in

A stability result of a fractional heat equation and time fractional diffusion equations governed by fractional fluxes in the Heisenberg group

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

Our research is divided into two parts. The first part studies the asymptotic behavior of a class of nonlocal diffusion problems in the fractional Sobolev–Slobodeckiĭ-spaces in the Heisenberg group by employing the theory of monotone operators and pullback attractors. In the second part of the manuscript, under some appropriate conditions, we study the well-posedness of a fractional time problem using fractional flows. To the best of our knowledge, this is the first time that fractional diffusion problems have been studied in the Heisenberg group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abatangelo, N., Valdinoci, E.: Getting Acquainted with the Fractional Laplacian. Springer INdAM Series (2019)

  2. Adimurth, A., Mallick, A.: A Hardy type inequality on fractional order Sobolev spaces on the Heisenberg group. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) XVIII, 917–949 (2018). https://doi.org/10.2422/2036-2145.201604010

    Article  MathSciNet  MATH  Google Scholar 

  3. Affili, E., Valdinoci, E.: Decay estimates for evolution equations with classical and fractional time-derivatives. J. Differ. Equ. 266(7), 4027–4060 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Akagi, G.: Fractional flows driven by subdifferentials in Hilbert spaces. Isr. J. Math. 234(2), 809–862 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Antil, H., Bartels, S.: Spectral approximation of fractional PDEs in image processing and phase field modeling. Comput. Methods Appl. Math. 17, 661–678 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Allen, M.R., Caffarelli, L.A., Vasseur, A.: A parabolic problem with a fractional time derivative. Arch. Ration. Mech. Anal. 221(2), 603–630 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Space. Noordhoff International, Leyden (1976)

    Book  MATH  Google Scholar 

  8. Bieske, T.: Comparison principle for parabolic equations in the Heisenberg group. Electron. J. Differ. Equ. pages No. 95, 11 pp. (electronic) (2005)

  9. Bonaldo, L.M.M., Hurtado, E.J.: On asymptotic behavior for a class of diffusion equations involving the fractional \(\wp (\cdot )\)-Laplacian as \(\wp (\cdot )\) goes to \(\infty \). Rev. Mat. Complut. (2022). https://doi.org/10.1007/s13163-021-00419-6

  10. Bordoni, S., Pucci, P.: Schródinger–Hardy systems involving two Laplacian operators in the Heisenberg group. Bull. Sci. Math. 146, 50–88 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brasco, L., Lindgren, E., Strömqvist, M.: Continuity of solutions to a nonlinear fractional diffusion equation. J. Evol. Equ. 21, 4319–4381 (2021). https://doi.org/10.1007/s00028-021-00721-2

    Article  MathSciNet  MATH  Google Scholar 

  12. Brezis, H.: Operateurs maximaus monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Company, Amsterdam (1973)

    MATH  Google Scholar 

  13. Capelato, E., Schiabel-Silva, K., Silva, R.P.: Perturbation of nonautonomous problem in \({\mathbb{R} }^{d}\). Math. Methods Appl. Sci. 36, 1625–1630 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Capogna, L., Pauls, S.D., Danielli, D., Tyson, J.T.: An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem. Progress in Mathematics, vol. 259. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  15. Carbotti, A., Dipierro, S., Valdinoci, E.: Local Density of Solutions to Fractional Equations. De Gruyter Studies in Mathematics. De Gruyter, Berlin (2019)

    Book  MATH  Google Scholar 

  16. Chow, W.L.: Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung. Math. Ann. 117, 98–105 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dipierro, S., Valdinoci, E.: A simple mathematical model inspired by the Purkinje cells: from delayed travelling waves to fractional diffusion. Bull. Math. Biol. 80(7), 1849–1870 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dier, D., Kemppainen, J., Siljander, J., Zacher, R.: On the parabolic Harnack inequality for non-local diffusion equations. Math. Z. 295(3–4), 1751–1769 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ferrari, F., FranchiC, B.: Harnack inequality for fractional sub-Laplacians in Carnot groups. Math. Z. 279, 435–458 (2015). https://doi.org/10.1007/s00209-014-1376-5

    Article  MathSciNet  MATH  Google Scholar 

  21. Garofalo, N., Lanconelli, E.: Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation. Ann. Inst. Fourier 40, 313–356 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7, 1005–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics, vol. 249, 3rd edn. Springer, Berlin (2014)

    Book  Google Scholar 

  24. Hormander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hurtado, E.J.: Non-local diffusion equations involving the fractional \(p(\cdot )\)-Laplacian. J. Dyn. Differ. Equ. 32, 557–587 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ivanov, S.P., Vassilev, D.N.: Extremals for the Sobolev Inequality and the Quaternionic Contact Yamabe Problem. World Scientific Publishing Co., Pte. Ltd., Hackensack (2011)

    Book  MATH  Google Scholar 

  27. Leonardi, G.P., Masnou, S.: On the isoperimetric problem in the Heisenberg group \({\mathbb{H} }^{d}\). Ann. Mat. Pura Appl. 184, 533–553 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, Q., Manfredi, J.J., Zhou, X.: Lipschitz continuity and convexity preserving for solutions of semilinear evolution equations in the Heisenberg group. Calc. Var. Partial Differ. Equ. 55(4), 55–80 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Loiudice, A.: Improved Sobolev inequalities on the Heisenberg group. Nonlinear Anal. 62, 953–962 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mazón, J.M., Rossi, J.D., Toledo, J.: Fractional p-Laplacian evolution equations. J. Math. Pures Appl. (9) 105(6), 810–844 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Palatucci, G., Piccinini, M.: Nonlocal Harnack inequalities in the Heisenberg group. Calc. Var. Partial Differ. Equ. 61(5), 185 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pucci, P., Temperini, L.: On the concentration-compactness principle for Folland–Stein spaces and for fractional horizontal Sobolev spaces. Math. Eng. 5, 21 (2023)

    MathSciNet  Google Scholar 

  33. Rashevsky, P.K.: Any two points of a totally nonholonomic space may be connected by an admissidle line. Uch. Zap. Ped. Inst. im. Liebknechta Ser. Phys. Math 2, 83–94 (1938)

    Google Scholar 

  34. Teman, R.: Infinite-Dimensional Dynamical System in Mechanics and Physics, Applied Mathematical Sciences, vol. 68. Springer, New York (1988)

    Book  Google Scholar 

  35. Vázquez, J.L.: Nonlinear diffusion with fractional Laplacian operators. In: Nonlinear Partial Differential Equations, Abel Symposium, vol. 7, pp. 271–298. Springer, Heidelberg (2012)

  36. Vázquez, J.L.: The Dirichlet problem for the fractional p-Laplacian evolution equation. J. Differ. Equ. 260(7), 6038–6056 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wittbold, P., Wolejko, P., Zacher, R.: Bounded weak solutions of time-fractional porous medium type and more general nonlinear and degenerate evolutionary integro-differential equations. J. Math. Anal. Appl. 499(1), 125007 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

E. J. Hurtado has received a research grant Capes 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Hurtado.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurtado, E.J., Salvatierra, A.P. A stability result of a fractional heat equation and time fractional diffusion equations governed by fractional fluxes in the Heisenberg group. Rend. Circ. Mat. Palermo, II. Ser 72, 3869–3889 (2023). https://doi.org/10.1007/s12215-023-00866-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-023-00866-8

Keywords

Mathematics Subject Classification

Navigation