Skip to main content
Log in

Generalization of Artinian rings and the formal power series rings

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

Let R be a commutative ring, S a multiplicative subset of R and M an R-module. We say that M is S-Artinian, if \(\text {ann}(M) \cap S = \emptyset\) and if for every descending chain of submodules \(N_1 \supseteq N_2 \supseteq \dots \supseteq N_n \supseteq \cdots\) of M, there exist \(s \in S\) and \(n_0 \in {\mathbb {N}}\) such that \(sN_{n_0} \subseteq N_n\) for all \(n \ge 1.\) The ring R is said to be S-Artinian if it is S-Artinian as an R-module. In this paper, we study the S-Artinian property and we show that the class of S-Artinian integral domains is a subclass of the class of anti-Archimedean domains. We show that the S-Artinian domains are exactly the domains exhibiting a smooth behavior for the quotient field of their formal power series rings. We also, give a necessary and sufficient condition for the idealization \(R(+)M\) to be an \(S(+)M\)-Artinian ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, D.D., Dumitrescu, T.: S-Noetherian rings. Commun. Algebra 30, 4407–4416 (2002)

    Article  MATH  Google Scholar 

  2. Anderson, D.D., Hamed, A., Zafrullah, M.: On S-GCD domains. J. Algebra Appl. 18(4), 1950067 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, D.D., Kang, B.G., Park, M.H.: Anti-Archimedean rings and power series rings. Commun. Algebra 26, 3223–3238 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, D.D., Winders, M.: Idealization of a module. J. Commun. Algebra 1, 3–56 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Atiyah, M.F., MacDonald, I.G.: Introduction to Commuative Algebra. Addison-Wesley, Reading (1969)

    MATH  Google Scholar 

  6. Benhissi, A.: Corps des fractions de \(A[\![X]\!]\). Commun. Algebra 25, 2861–2879 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benhissi, A.: Les Anneaux De Séries Formelles, Queen’s Papers in Pure and Applied Mathematics 124. Queen’s University, Kingston (2003)

    Google Scholar 

  8. Bennis, D., El Hajoui, M.: On S-coherence. J. Korean Math. Soc. 55(6), 1499–1512 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Chang, G.W., Oh, D.Y.: When \(D(\!(X)\!)\) and \(D\{\!\{X\}\!\}\) are Prüfer domains. J. Pure Appl. Algebra 216, 276–279 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dobbs, D.E.: Ahmes expansions of formal Laurent series and a class of nonarchimedean integral domains. J. Algebra 103, 193–201 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. D’Anna, M., Finocchiaro, C.A., Fontana, M.: Amalgamated algebras along an ideal. In: Commutative Algebra and Applications, Proceedings of the Fifth International Fez Conference on Commutative Algebra and Applications, Fez, Morocco, 2008, pp. 155–172. W. de Gruyter Publisher, Berlin (2009)

  12. Gilmer, R.: A note on the quotient field of the domain \(D[\![X]\!]\). Proc. Am. Math. Soc. 18, 1138–1140 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gilmer, R.: Multiplicative Ideal Theory. Marcel Dekker, New York (1972)

    MATH  Google Scholar 

  14. Hamed, A., Hizem, S.: On the class group and S-class group of formal power series rings. J. Pure Appl. Algebra 221, 2869–2879 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hamed, A., Maaref, W.: On S-strong Mori modules. Ricerche Mat. 67, 457–464 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jara, P.: An extension of S-Artinian rings and modules to a hereditary torsion theory setting. Commun. Algebra 49, 1583–1599 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim, H., Kim, M.O., Lim, J.W.: On S-strong Mori domains. J. Algebra 416, 314–332 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lim, J.W., Oh, D.Y.: S-Noetherian properties on amalgamated algebras along an ideal. J. Pure Appl. Algebra 218, 1075–1080 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nagata, M.: Local Rings. Interscience Publishers, New York (1962)

    MATH  Google Scholar 

  20. Park, M.H.: A localization of a power series ring over a Prüfer domain. J. Pure Appl. Algebra 225, 106765 (2021)

    Article  MATH  Google Scholar 

  21. Park, M.H., Hamed, A., Maaref, W.: Anti-Archimedean property and the formal power series rings. Commun. Algebra 47, 3190–3197 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sevim, E.S., Tekir, U., Koc, S.: S-Artinian rings and finitely S-cogenerated rings. J. Algebra Appl. 19(3), 2050051 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sheldon, P.B.: How changing \(D[\![X]\!]\) changes its quotient field. Trans. Am. Math. Soc. 159, 223–244 (1971)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for his/her comments and suggestions which really help us to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid Maaref.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maaref, W., Hamed, A. & Benhissi, A. Generalization of Artinian rings and the formal power series rings. Rend. Circ. Mat. Palermo, II. Ser 72, 2199–2211 (2023). https://doi.org/10.1007/s12215-022-00786-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-022-00786-z

Keywords

Mathematics Subject Classification

Navigation