Skip to main content
Log in

The heat kernel on the quantized sphere

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

We give an explicit expansion series and an integral representation for the heat kernel associated with the magnetic Laplacian on the quantized Riemann sphere. We also derive the asymptotic expansion of the associated heat operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility statement

All data generated or analyzed during this study are included in this article.

References

  1. Askey, R.: Orthogonal Polynomials and Special Functions. Society for Industrial and Applied Mathematics, Philadelphia (1975)

    Book  MATH  Google Scholar 

  2. Atiyah, M., Bott, R., Patodi, V.K.: On the heat equation and the index theorem. Invent. Math. 19, 279–330. Errata Invent. Math. 28(1975), 277–280 (1973)

  3. Benabdellah, A.: Noyau de diffusion sur les espaces homogenes compacts. Bull. Soc. Math. Fr. 101, 265–283 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cahn, R.S., Wolf, J.A.: Zeta functions and their asymptotic expansions for compact symmetric spaces of rank one. Comment. Math. Helv. 51, 1–21 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  5. Calin, O., Chang, D.C., Furutani, K., Iwasaki, C.: Heat Kernels for Elliptic and Sub-elliptic Operators. Methods and Techniques. Applied and Numerical Harmonic Analysis. Birkhäuser, New York (2011)

    MATH  Google Scholar 

  6. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  7. Dijksma, A., Koornwinder, T.H.: Spherical harmonics and the product of two Jacobi polynomials. Nederl. Akad. Wetensch. Proc. Ser. A 74 = Indag. Math. 33, 191–196 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eskin, L.D.: The heat equation and the Weierstrass transform on certain symmetric Riemannian spaces. Am. Math. Sot. Transl. 75, 239–254 (1968)

    MATH  Google Scholar 

  9. Fejer, L.: Sur le développement d’une fonction arbitraire suivant les fonctions de Laplace. C. R. Acad. Sci. Paris 146, 224–225 (1908)

    MATH  Google Scholar 

  10. Fegan, H.D.: The heat equation on a compact Lie group. Trans. Am. Math. Sot. 246, 339–357 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fisher, H.R., Jungster, J.J., Williams, F.J.: The heat kernel on the two-sphere. J. Math. Anal. Appl. 112, 328–334 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gilkey, P.B.: lnvariance Theory, Heat Equation and the Atiyah–Singer Index Theory. Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)

    Google Scholar 

  13. Grigor’yan, A.: Heat Kernel and Analysis on Manifolds. AMS/IP Studies in Advanced Mathematics, vol. 47. American Mathematical Society, Providence (2009)

    Google Scholar 

  14. Hafoud, A.: Analyse spectrale concràte d’une famille de déformation du Laplacien de Fubini-Study sur l’espace projectif complexe. Ph.D. thesis, Mohammed V university in Rabat (2002)

  15. Jerison, D., Lee, J.M.: Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem. J. Am. Math. Soc. 1(1), 1–13 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems in the Special Functions of Mathematical Physics. Springer, Berlin (1966)

    Book  MATH  Google Scholar 

  17. Mulholland, H.: An asymptotic expansion for \(\sum (2n + 1) e^{- (n+1/2)^2}\). Proc. Camb. Philos. Soc. 24, 280–289 (1928)

    Article  MATH  Google Scholar 

  18. Peetre, J., Zhang, G.: Harmonic analysis on the quantized Riemann sphere. Int. J. Math. Math. Sci. 2(16), 225–243 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Vassilevich, D.V.: Heat kernel expansion: user’s manual. Phys. Rep. 388, 279–360 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the anonymous referee for his careful reading helping to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allal Ghanmi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafoud, A., Ghanmi, A. The heat kernel on the quantized sphere. Rend. Circ. Mat. Palermo, II. Ser 72, 2459–2468 (2023). https://doi.org/10.1007/s12215-022-00784-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-022-00784-1

Keywords

Mathematics Subject Classification

Navigation