Abstract
We give an explicit expansion series and an integral representation for the heat kernel associated with the magnetic Laplacian on the quantized Riemann sphere. We also derive the asymptotic expansion of the associated heat operator.
Similar content being viewed by others
Data availibility statement
All data generated or analyzed during this study are included in this article.
References
Askey, R.: Orthogonal Polynomials and Special Functions. Society for Industrial and Applied Mathematics, Philadelphia (1975)
Atiyah, M., Bott, R., Patodi, V.K.: On the heat equation and the index theorem. Invent. Math. 19, 279–330. Errata Invent. Math. 28(1975), 277–280 (1973)
Benabdellah, A.: Noyau de diffusion sur les espaces homogenes compacts. Bull. Soc. Math. Fr. 101, 265–283 (1973)
Cahn, R.S., Wolf, J.A.: Zeta functions and their asymptotic expansions for compact symmetric spaces of rank one. Comment. Math. Helv. 51, 1–21 (1976)
Calin, O., Chang, D.C., Furutani, K., Iwasaki, C.: Heat Kernels for Elliptic and Sub-elliptic Operators. Methods and Techniques. Applied and Numerical Harmonic Analysis. Birkhäuser, New York (2011)
Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1990)
Dijksma, A., Koornwinder, T.H.: Spherical harmonics and the product of two Jacobi polynomials. Nederl. Akad. Wetensch. Proc. Ser. A 74 = Indag. Math. 33, 191–196 (1971)
Eskin, L.D.: The heat equation and the Weierstrass transform on certain symmetric Riemannian spaces. Am. Math. Sot. Transl. 75, 239–254 (1968)
Fejer, L.: Sur le développement d’une fonction arbitraire suivant les fonctions de Laplace. C. R. Acad. Sci. Paris 146, 224–225 (1908)
Fegan, H.D.: The heat equation on a compact Lie group. Trans. Am. Math. Sot. 246, 339–357 (1978)
Fisher, H.R., Jungster, J.J., Williams, F.J.: The heat kernel on the two-sphere. J. Math. Anal. Appl. 112, 328–334 (1985)
Gilkey, P.B.: lnvariance Theory, Heat Equation and the Atiyah–Singer Index Theory. Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)
Grigor’yan, A.: Heat Kernel and Analysis on Manifolds. AMS/IP Studies in Advanced Mathematics, vol. 47. American Mathematical Society, Providence (2009)
Hafoud, A.: Analyse spectrale concràte d’une famille de déformation du Laplacien de Fubini-Study sur l’espace projectif complexe. Ph.D. thesis, Mohammed V university in Rabat (2002)
Jerison, D., Lee, J.M.: Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem. J. Am. Math. Soc. 1(1), 1–13 (1988)
Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems in the Special Functions of Mathematical Physics. Springer, Berlin (1966)
Mulholland, H.: An asymptotic expansion for \(\sum (2n + 1) e^{- (n+1/2)^2}\). Proc. Camb. Philos. Soc. 24, 280–289 (1928)
Peetre, J., Zhang, G.: Harmonic analysis on the quantized Riemann sphere. Int. J. Math. Math. Sci. 2(16), 225–243 (1993)
Vassilevich, D.V.: Heat kernel expansion: user’s manual. Phys. Rep. 388, 279–360 (2003)
Acknowledgements
The authors are indebted to the anonymous referee for his careful reading helping to improve the paper.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hafoud, A., Ghanmi, A. The heat kernel on the quantized sphere. Rend. Circ. Mat. Palermo, II. Ser 72, 2459–2468 (2023). https://doi.org/10.1007/s12215-022-00784-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12215-022-00784-1