Skip to main content
Log in

Ishikawa type mean convergence theorems for finding common fixed points of nonlinear mappings in Hilbert spaces

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

Combining the ideas of Ishikawa iteration and mean iteration, we establish weak convergence theorems for finding common fixed points of nonlinear mappings. The mappings are not necessarily continuous or commutative. We consider a class of mappings which includes nonexpansive mappings, generalized hybrid mappings and normally 2-generalized hybrid mappings as special cases. Our result generates many alternative iteration schemes to approximate common fixed points of nonlinear mappings and improves many existing theorems in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afassinou, K., Narain, O.K., Otunuga, O.E.: Iterative algorithm for approximating solutions of split monotone variational inclusion, variational inequality and fixed point problems in real Hilbert spaces. Nonlinear Funct. Anal. Appl. 25(3), 491–510 (2020)

    MATH  Google Scholar 

  2. Alizadeh, S., Moradlou, F.: A weak convergence theorem for \(\mathit{2}\)-generalized hybrid mappings. ROMAI J. 11, 1 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Alizadeh, S., Moradlou, F.: Weak and strong convergence theorems for \(\mathit{m}\)-generalized hybrid mappings in Hilbert spaces. Topol. Methods Nonlinear Anal. 46(1), 315–328 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Aoyama, K., Iemoto, S., Kohsaka, F., Takahashi, W.: Fixed point and ergodic theorems for \(\lambda \)-hybrid mappings in Hilbert spaces. J. Nonlinear Convex Anal. 11, 335–343 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Atsushiba, S.: Nonlinear ergodic theorems for normally \(\mathit{2}\)-generalized hybrid sequences. J. Nonlinear Convex Anal. 20, 251–264 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Atsushiba, S.: Fixed point property for normally \(\mathit{2}\)-generalized hybrid mappings. J. Nonlinear Var. Anal. 3(2), 149–158 (2019)

    MATH  Google Scholar 

  7. Atsushiba, S., Takahashi, W.: Approximating common fixed points of two nonexpansive mappings in Banach spaces. Bull. Austral. Math. Soc. 57, 117–127 (1998)

    MathSciNet  MATH  Google Scholar 

  8. Baillon, J.B.: Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert. C. R. Acad. Sci. Ser. A-B 280, 1511–1514 (1975)

    MathSciNet  MATH  Google Scholar 

  9. Berinde, V.: On the convergence of the Ishikawa iteration in the calss of quasi-contractive operators. Acta Math. Univ. Comenianae 73(1), 119–126 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Berinde, V.: Iterative approximation of fixed points, second ed., In: Lecture Notes in Mathematics, vol. 1912, Springer, Berlin, (2007)

  11. Cholamjiak, P., Cholamjiak, W.: Fixed point theorems for hybrid multivalued mappings in Hilbert spaces. J. Fixed Point Theory Appl. 18, 673–688 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Cholamjiak, W., Suantai, S., Cho, Y.J.: Fixed points for nonspreading-type multi-valued mappings: existence and convergence results. Ann. Acad. Rom. Sci. Ser. Math. Apll 10(2), 838–844 (2018)

    MathSciNet  Google Scholar 

  13. Chugh, R., Kumar, V., Kumar, S.: Strong convergence of a new three step iterative scheme in Banach spaces. Am. J. Comput. Math. 2(04), 345 (2012)

    Google Scholar 

  14. Hojo, M.: Attractive point and mean convergence theorems for normally generalized hybrid mappings in Hilbert spaces. J. Nonlinear Convex Anal. 18, 2120–2209 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Hojo, M., Kondo, A., Takahashi, W.: Weak and strong convergence theorems for commutative normally 2-generalized hybrid mappings in Hilbert spaces, Linear. Nonlinear Anal. 4, 117–134 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Hojo, M., Takahashi, S., Takahashi, W.: Attractive point and ergodic theorems for two nonlinear mappings in Hilbert spaces, Linear. Nonlinear Anal. 3, 275–286 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Hojo, M., Takahashi, W., Termwuttipong, I.: Strong convergence theorems for 2-generalized hybrid mappings in Hilbert spaces. Nonlinear Anal. 75, 2166–2176 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Igarashi, T., Takahashi, W., Tanaka, K.: Weak convergence theorems for nonspreading mappings and equilibrium problems. In: Akashi, S., Takahashi, W., Tanaka, T. (eds.) Nonlinear Analysis and Optimization, pp. 75–85. Yokohama Publishers, Yokohama (2008)

    Google Scholar 

  19. Ishikawa, S.: Fixed points by a new iteration method. Proc. Amer. Math. Soc. 44, 147–150 (1974)

    MathSciNet  MATH  Google Scholar 

  20. Itoh, S., Takahashi, W.: The common fixed point theory of singlevalued mappings and multivalued mappings. Pacific J. Math. 79, 493–508 (1978)

    MathSciNet  MATH  Google Scholar 

  21. Kocourek, P., Takahashi, W., Yao, J.-C.: Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert Spaces. Taiwan. J. Math. 14, 2497–2511 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Kohsaka, F.: Existence and approximation of common fixed points of two hybrid mappings in Hilbert spaces. J. Nonlinear Convex Anal. 16, 2193–2205 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Kohsaka, F., Takahashi, W.: Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces. SIAM J. Optim. 19, 824–835 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Kohsaka, F., Takahashi, W.: Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces. Arch. Math. 91, 166–177 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Kondo, A.: Strong approximation using hybrid methods to find common fixed points of noncommutative nonlinear mappings in Hilbert spaces. J. Nonlinear Convex Anal. 23, 33–58 (2022)

    MathSciNet  MATH  Google Scholar 

  26. Kondo, A.: Mean convergence theorems using hybrid methods to find common fixed points of noncommutative nonlinear mappings in Hilbert spaces. J. Appl. Math. Comput. 68, 217–248 (2022)

    MathSciNet  MATH  Google Scholar 

  27. Kondo, A., Takahashi, W.: Attractive point and weak convergence theorems for normally \(N\)-generalized hybrid mappings in Hilbert spaces, Linear. Nonlinear Anal. 3, 297–310 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Kondo, A., Takahashi, W.: Strong convergence theorems of Halpern’s type for normally \(2\)-generalized hybrid mappings in Hilbert spaces. J. Nonlinear Convex Anal. 19, 617–631 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Kondo, A., Takahashi, W.: Approximation of a common attractive point of noncommutative normally \(2\)-generalized hybrid mappings in Hilbert spaces, Linear. Nonlinear Anal. 5, 279–297 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Kondo, A., Takahashi, W.: Weak convergence theorems to common attractive points of normally \(2\)-generalized hybrid mappings with errors. J. Nonlinear Convex Anal. 21, 2549–2570 (2020)

    MathSciNet  MATH  Google Scholar 

  31. Kondo, A., Takahashi, W.: Strong convergence theorems for finding common attractive points of normally \(2\)-generalized hybrid mappings and applications, Linear. Nonlinear Anal. 6, 421–438 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Kurokawa, Y., Takahashi, W.: Weak and strong convergence theorems for nonspreading mappings in Hilbert spaces. Nonlinear Anal. 73, 1562–1568 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Ma, L., Gao, X., Zhou, H.: Three kinds of hybrid algorithms and their numerical realizations for finite family of quasi-nonexpansive mappings, J. Nonlinear Funct. Anal. 2019 (2019): Article ID 8

  34. Mann, W.R.: Mean value methods in iteration. Proc. Amer. Math. Soc. 4, 506–510 (1953)

    MathSciNet  MATH  Google Scholar 

  35. Panyanak, B.: Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces. Comput. Math. with Appl. 54(6), 872–877 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Maruyama, T., Takahashi, W., Yao, M.: Fixed point and mean ergodic theorems for new nonlinear mappings in Hilbert spaces. J. Nonlinear Convex Anal. 12, 185–197 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Noor, M.A.: New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 251(1), 217–229 (2000)

    MathSciNet  MATH  Google Scholar 

  38. Phuengrattana, W., Suantai, S.: On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval. J. Comput. Appl. Math. 235(9), 3006–3014 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Sadeewong, P., Saleewong, T., Kumam, P., Cho, Y.J.: The modified viscosity iteration with \(m\)-generalized hybrid mappings and \((a, b)\)-monotone mappings for equilibrium problems. Thai J. Math. 16(1), 243–265 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Rouhani, B.D.: Ergodic and fixed point theorems for sequences and nonlinear mappings in a Hilbert space. Demonstr. Math. 51(1), 27–36 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Shimizu, T., Takahashi, W.: Strong convergence to common fixed points of families of nonexpansive mappings. J. Math. Anal. Appl. 211, 71–83 (1997)

    MathSciNet  MATH  Google Scholar 

  42. Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishes, Yokohama, Fixed Point Theory and its Applications (2000)

  43. Takahashi, W.: Introduction to Nonlinear and Convex Analysis. Yokohama Publishes, Yokohama (2009)

    MATH  Google Scholar 

  44. Takahashi, W.: Fixed point theorems for new nonlinear mappings in a Hilbert space. J. Nonlinear Convex Anal. 11, 79–88 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Takahashi, W., Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118, 417–428 (2003)

    MathSciNet  MATH  Google Scholar 

  46. Takahashi, W., Wen, C.F., Yao, J.-C.: Strong convergence theorems by hybrid methods for noncommutative normally 2-generalized hybrid mappings in Hilbert spaces. Appl. Anal. Optim. 3, 43–56 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Takahashi, W., Wong, N.C., Yao, J.-C.: Attractive point and weak convergence theorems for new generalized hybrid mappings in Hilbert spaces. J. Nonlinear Convex Anal. 13, 745–757 (2012)

    MathSciNet  MATH  Google Scholar 

  48. Tan, K.K., Xu, H.K.: Approximating fixed points of non-expansive mappings by the Ishikawa iteration process. J. Math. Anal. Appl. 178, 301–301 (1993)

    MathSciNet  MATH  Google Scholar 

  49. Tang, J., Zhu, J.: A new modified proximal point algorithm for a finite family of minimization problem and fixed point for a finite family of demicontractive mappings in Hadamard spaces. Nonlinear Funct. Anal. Appl. 25(3), 563–577 (2020)

    MATH  Google Scholar 

  50. Truong, N.D., Kim, J.K., Anh, T.H.H.: Hybrid inertial contraction projection methods extended to variational inequality problems. Nonlinear Funct. Anal. Appl. 27(1), 203–221 (2022)

    MATH  Google Scholar 

  51. Wongyai, K., Thianwan, T.: Projection type Ishikawa iteration with perturbations for common fixed points of two nonself generalized asymptotically quasi-nonexpansive mappings. Thai J. Math. 17(3), 843–859 (2019)

    MathSciNet  MATH  Google Scholar 

  52. Yamada, I.: The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings,In: Butnariu, D., Censor, Y., and Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, pp. 473–504, North-Holland, Amsterdam, Holland (2001)

  53. Yan, F., Su, Y., Feng, Q.: Convergence of Ishikawa’method for generalized hybrid mappings. Commun. Korean Math. Soc. 28(1), 135–141 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This study is partially supported by the Ryousui Gakujutsu Foundation of Shiga University. The author would really appreciate the anonymous reviewers for their careful reading, comments and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsumasa Kondo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondo, A. Ishikawa type mean convergence theorems for finding common fixed points of nonlinear mappings in Hilbert spaces. Rend. Circ. Mat. Palermo, II. Ser 72, 1417–1435 (2023). https://doi.org/10.1007/s12215-022-00742-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-022-00742-x

Keywords

Mathematics Subject Classification

Navigation