Skip to main content
Log in

Dynamics of the coquaternionic maps x2 + bx

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

This paper deals with the dynamics of the one-parameter family of coquaternionic quadratic maps \(x^2+\mathsf {b} x\). By making use of recent results for the zeros of one-sided coquaternionic polynomials, the fixed points are analytically determined. The stability of these fixed points is also addressed, where, in some cases, due to the appearance of sets of non-isolated points, a suitably adapted notion of stability is used. The results obtained show clearly that this family is not dynamically equivalent to the simpler family \(x^2+\mathsf {c}\) previously studied by the authors. Some numerical examples of other dynamics beyond fixed points are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Code availability

A Mathematica add-on application implementing the algebra of coquaternions, written by the authors, is available at the site http://w3.math.uminho.pt/ Coquaternions. Some Matlab programs used in our computations can be obtained upon request to the corresponding author.

Notes

  1. This is no longer true, however, for the case of periodic points of period two.

  2. This polynomial is more commonly referred to as the characteristic polynomial of the coquaternion \(\mathsf {q}\). Since this polynomial is an invariant of the class, we find it more convenient to adopt our denomination.

  3. Since the product of two polynomials in \({\mathbb {H}}_\mathrm{{coq}}\) is defined in the usual manner, we can use the “Euclidean Division Algorithm" to perform the division of two polynomials, provided that the leading coefficient of the divisor is non-singular, which is obviously the case here.

  4. Note that, in the case we are considering, we have four distinct eigenvalues and hence such a basis always exists.

  5. In this case, we do not have four linearly independent eigenvectors, but we can consider a basis of \(\mathbb {R}^4\) formed by generalized eigenvectors.

References

  1. Abłamowicz, R.: The Moore-Penrose inverse and singular value decomposition of split quaternions. Adv. Appl. Clifford Algebr. 30, 33 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ata, E., Yaylı, Y.: Split quaternions and semi-Euclidean projective spaces. Chaos Solitons & Fract. 41(4), 1910–1915 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aulbach, B.: Continuous and discrete dynamics near manifolds of equibria. In: Lecture Notes in Mathematics, vol. 1058. Springer-Verlag, Berlin (1984)

  4. Baptista, A.N., Ramos, C.C., Martins, N.: Iteration of quadratic maps on matrix algebras. Int. J. Bifurc. Chaos. 22(6), 1250150–1250257 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beardon, A.F.: Iteration of rational functions: complex analytical dynamical systems. In: Graduate Texts in Mathematics, vol. 132. Springer-Verlag, New York (2000)

  6. Bedding, S., Briggs, K.: Iteration of quaternion maps. Int. J. Bifurc. Chaos. 5, 877–881 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bedding, S., Briggs, K.: Iteration of quaternion functions. Am. Math. Monthly. 103, 654–664 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bekar, M., Yayli, Y.: Involutions of complexified quaternions and split quaternions. Adv. Appl. Clifford Algebr. 23, 283–299 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brody, D.C., Graefe, E.-M.: On complexified mechanics and coquaternions. J. Phys. A Math. Theor. 44, 1–9 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buchanan, W., Gomatam, J., Steves, B.: Generalized mandelbrot sets for meromorphic complex and quaternionic maps. Int. J. Bifurc. Chaos. 12(8), 1755–1777 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cockle, J.: On systems of algebra involving more than one imaginary; and on equations of the fifth degree. Philos. Mag. 35(3), 434–435 (1849)

    Google Scholar 

  12. Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: Polynomials over quaternions and coquaternions: a unified approach. Lect. Notes Comput. Sci. 10405, 379–393 (2017)

    Article  MathSciNet  Google Scholar 

  13. Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: Iteration of quadratic maps on coquaternions. Int. J. Bifurc. Chaos 25, 1730039 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: Basins of attraction for a quadratic coquaternionic map. Chaos Solitons & Fractals. 104, 716–724 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Falcão, M.I., Miranda, F., Severino, R., Soares, M.J.: The number of zeros of unilateral polynomials over coquaternions revisited. Linear Multilinear Algebr. 67(6), 1231–1249 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Friedman, A.: What is mathematical Biology and how useful is it? AMS Not. 7(7), 851–857 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Gao, C., Chen, X., Shen, Y.-G.: Quintessence and phantom emerging from the split-complex field and the split-quaternion field. Gen Relativ. Gravit. 48(11), 1–23 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Galeeva, R., Verjovsky, A.: Quaternion dynamics and fractals in \({\mathbb{R}}^4\). Int. J. Bifurc. Chaos 9(9), 1771–1775 (1999)

    Article  MATH  Google Scholar 

  19. Gogberashvili, M.: Split quaternions and particles in \((2+1)\)-space. Eur. Phys. J. C. 74, 3200 (2014)

    Article  Google Scholar 

  20. Gomatam, J., Doyle, J., Steves, B., McFarlane, I.: Generalization of the Mandelbrot set: quaternionic quadratic maps. Chaos Solitons & Fract. 5, 971–986 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Heidrich, R., Jank, G.: On the iteration of quaternionic Moebius transformations. Complex Var. Theor. Appl. Int. J. 29(4), 313–318 (1996)

    MathSciNet  MATH  Google Scholar 

  22. Holbrook, J.A.R.: Quaternionic Fatou-Julia sets. Ann. Sci. Math. Québec. 11(1), 79–94 (1987)

    MathSciNet  MATH  Google Scholar 

  23. Jiang, T., Zhang, Z., Jiang, Z.: Algebraic techniques for Schrödinger equations in split quaternionic mechanics. Comput. Math. Appl. 75, 2217–2222 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kula, L., Yaylı, Y.: Split quaternions and rotations in semi Euclidean space \(E^4_2\). J. Korean Math. Soc. 44(6), 1313–1327 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lakner, M., Akapin-Rugelj, M., Petek, P.: Symbolic dynamics in investigation of quaternionic Julia sets. Chaos Solitons & Fract. 24(5), 1189–1201 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H.Freeman, San Francisco, California (1982)

    MATH  Google Scholar 

  27. Marrani, A., Romano, L.: Orbits in nonsupersymmetric magic theories. Int. J. Mod. Phys. A. 34(32), 1950190 (2019)

    Article  MathSciNet  Google Scholar 

  28. Milnor, J.: Dynamics in One Complex Variable. Annals of Mathematics Studies. Princeton University Press, Princeton (2011)

    Book  MATH  Google Scholar 

  29. Nakane, S.: Dynamics of a family of quadratic maps in the quaternion space. Int. J. Bifurc. Chaos 15(8), 2535–2543 (2005)

    Article  MATH  Google Scholar 

  30. Ni, Q.-Y., Ding, J.-K., Cheng, X.-H., Jiao, Y.-N.: \(2\times 2\) matrix representation forms and inner relationships of split quaternions. Adv. Appl. Clifford Algebr. 29(2), 1–2 (2019)

    Article  MATH  Google Scholar 

  31. Özdemir, M., Ergin, A. A.: Some geometric applications of split quaternions. Proc. 16th Int. Conf. Jangjeon Math. Soc.16, 108-115 (2005)

  32. Özdemir, M., Ergin, A.A.: Rotations with unit timelike quaternions in Minkowski 3-space. J. Geometry Phys. 56(2), 322–336 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Özdemir, M., Simsek, H.: Rotations on a lightcone in Minkowski 3-space. Adv. Appl. Clifford Algebr. 27, 2841–2853 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Özdemir, Z., Tuncer, O.O., Gök, İ: Kinematic equations of Lorentzian magnetic flux tubes based on split quaternion algebra. Eur. Phys. J. Plus. 136(9), 1–8 (2021)

    Article  Google Scholar 

  35. Petek, P.: On the quaternionic Julia sets. In: Bountis, T. (ed.) Chaotic Dynamics: Theory and Practice, pp. 53–58. Springer, Berlin (1992)

    Chapter  Google Scholar 

  36. Petek, P.: Circles and periodic points in quaternionic Julia sets. Open Syst. Inf. Dyn. 4(4), 487–492 (1997)

    Article  MATH  Google Scholar 

  37. Scharler, D.F., Siegele, J., Schröcker, H.P.: Quadratic split quaternion polynomials: factorization and geometry. Adv. Appl. Clifford Algebr. 30, 11 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Serenevy, A. K.: Dynamics of polynomial maps of \(2 \times 2\) real matrices. In: Summer Conference on General Topology and its Applications, pp. 763-778 (2001)

  39. Serôdio, R., Beites, P.D., Vitória, J.: Intersection of a double cone and a line in the split-quaternions context. Adv. Appl. Clifford Algebr. 27(3), 2795–2803 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tuncer, O.O., Çanakcı, Z., Gök, İ, Yaylı, Y.: Circular surfaces with split quaternionic representations in Minkowski 3-space. Adv. Appl. Clifford Algebr. 28, 63 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Research at CMAT was partially financed by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia, within the Projects UIDB/00013/2020 and UIDP/00013/2020. Research at NIPE has been financed by National Funds of the FCT - Fundação para a Ciência e a Tecnologia, within the Project UIDB/03182/2020. The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Joana Soares.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falcão, M.I., Miranda, F., Severino, R. et al. Dynamics of the coquaternionic maps x2 + bx. Rend. Circ. Mat. Palermo, II. Ser 72, 959–975 (2023). https://doi.org/10.1007/s12215-021-00715-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-021-00715-6

Keywords

Mathematics Subject Classification

Navigation