Skip to main content

On the body of ample angles of asymptotically log Fano varieties

Abstract

In dimension two, we reduce the classification problem for asymptotically log Fano pairs to the problem of determining generality conditions on certain blow-ups. In any dimension, we prove the rationality of the body of ample angles of an asymptotically log Fano pair, i.e., these convex bodies are always rational polytopes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Birkar, C., Cascini, P., Hacon, C.: Existence of minimal models for varieties of log general type. J. Amer. Math. Soc. 23, 405–468 (2010)

    MathSciNet  Article  Google Scholar 

  2. Cascini, P., Gongyo, Y.: On the anti-canonical ring and varieties of Fano type. Saitama Math. J. 30, 27–38 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Cascini, P., Lazic, V.: New outlook on the Minimal Model Program, I. Duke Math. J. 161, 2415–2467 (2012)

    MathSciNet  Article  Google Scholar 

  4. Cheltsov, I., Martinez-Garcia, J.: Dynamic alpha-invariants of del Pezzo surfaces. Int. Math. Res. Not. IMRN 6, 2994–3028 (2016)

    MathSciNet  Article  Google Scholar 

  5. Cheltsov, I.A., Rubinstein, Y.A.: Asymptotically log Fano varieties. Adv. Math. 285, 1241–1300 (2015)

    MathSciNet  Article  Google Scholar 

  6. Cheltsov, I.A., Rubinstein, Y.A.: On flops and canonical metrics. Ann. Sci. Norm. Super. Pisa Cl. Sci. 18, 283–311 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Cheltsov, I., Rubinstein, Y.A., Zhang, K.: Basis log canonical thresholds, local intersection estimates, and asymptotically log del Pezzo surfaces. Selecta Math. 25, 941 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Cheltsov, I., Rubinstein, Y.A., Zhang, K.: Delta invariants of smooth cubic surfaces. Eur. J. Math. 5, 729–762 (2019)

    MathSciNet  Article  Google Scholar 

  9. del Pezzo, P.: Sulle superficie delle \(n^{{\rm mo}}\) ordine immerse nello spazio di \(n\) dimensioni. Rend. del circolo matematico di Palermo 1, 241–271 (1887)

    Article  Google Scholar 

  10. Fujita, K.: On log K-stability for asymptotically log Fano varieties. Ann. Fac. Sci. Toulouse Math. 25, 1013–1024 (2016)

    MathSciNet  Article  Google Scholar 

  11. Fujita, K.: On the uniform K-stability for some asymptotically log del Pezzo surfaces, preprint, (2019), http://arxiv.org/abs/1907.04998

  12. Fujita, K., Liu, Y., Süß, H., Zhang, K., Zhuang, Z.: On the Cheltsov–Rubinstein conjecture, preprint, (2019), http://arxiv.org/abs/1907.02727

  13. Gallardo, P., Martinez-Garcia, J., Spotti, C.: Applications of the moduli continuity method to log K-stable pairs, preprint, (2018) http://arxiv.org/abs/1811.00088

  14. Guenancia, H., Paun, M.: Conic singularities metrics with prescribed Ricci curvature: general cone angles along normal crossing divisors. J. Diff. Geom. 103, 15–57 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Hartshorne, R.: Algebraic geometry. Springer, New York (1977)

    Book  Google Scholar 

  16. Hitchin, N.: On the curvature of rational surfaces. Proc. Symp. Pure Math. Am. Math. Soc. 27, 65–80 (1975)

    MathSciNet  Article  Google Scholar 

  17. Hu, Y., Keel, S.: Mori dream spaces and GIT. Michigan Math. J. 48, 331–348 (2000)

    MathSciNet  Article  Google Scholar 

  18. Jeffres, T., Mazzeo, R., Rubinstein, Y.A.: Kähler–Einstein metrics with edge singularities, (with an appendix by C. Li and Y.A. Rubinstein). Annals Math. 183, 95–176 (2016)

    MathSciNet  Article  Google Scholar 

  19. Kaloghiros, A.-S., Küronya, A., Lazić, V.: Finite generation and geography of models. Adv. Stud. Pure Math. 70, 215–245 (2016)

    MathSciNet  Article  Google Scholar 

  20. Maeda, H.: Classification of logarithmic Fano threefolds. Comp. Math. 57, 81–125 (1986)

    MathSciNet  MATH  Google Scholar 

  21. Mazzeo, R., Rubinstein, Y.A.: The Ricci continuity method for the complex Monge-Ampére equation, with applications to Kähler-Einstein edge metrics. C. R. Math. Acad. Sci. Paris 350, 693–697 (2012)

    MathSciNet  Article  Google Scholar 

  22. Rubinstein, Y.A.: Smooth and singular Kähler–Einstein metrics, in: Geometric and Spectral Analysis (P. Albin et al., Eds.), Amer. Math. Soc. and Centre de Recherches Mathématiques, pp. 45–138 (2014)

  23. Rubinstein, Y.A.: High-dimensional convex sets arising in algebraic geometry, in: Geometric Aspects of Functional Analysis (B. Klartag, E. Milman, Eds.), Lecture Notes in Mathematics 2266, pp. 301–323 (2020)

  24. Rubinstein, Y.A.: A logarithmic del Pezzo–Manin–Hitchin theorem, preprint, (2020)

  25. Rubinstein, Y.A.: Classification of strongly asymptotically log del Pezzo flags and surfaces, preprint, (2020), http://arxiv.org/abs/2006.16369

  26. Shokurov, V., Choi, S.R.: Geography of log models: theory and applications. Cent. Eur. J. Math. 9, 489–534 (2011)

    MathSciNet  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanir A. Rubinstein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This note grew from interactions between J.M.G. and Y.A.R, Y.A.R.’s lecture, and the ensuing conversations between P.C. and Y.A.R. at the conference on “Birational Geometry, Kähler–Einstein Metrics and Degenerations" that took place in November 2019. Thanks go to J. Park and POSTECH for the excellent conference and hospitality. Thanks to I.A. Cheltsov for co-organizing the conference as well as many helpful discussions. The research of P.C. was supported by an EPSRC fellowship.

The research of Y.A.R. was supported by NSF grants DMS-1515703,1906370 and the Rosi & Max Varon Visiting Professorship (Fall 2019 and Spring 2020) at the Weizmann Institute of Science to which he is grateful for the excellent research conditions.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cascini, P., Martinez-Garcia, J. & Rubinstein, Y.A. On the body of ample angles of asymptotically log Fano varieties. Rend. Circ. Mat. Palermo, II. Ser (2022). https://doi.org/10.1007/s12215-021-00712-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12215-021-00712-9

Keywords

  • Asymptotically log Fano varieties
  • Asymptotically log Del Pezzo surfaces
  • Body of ample angles

MSC subject codes:

  • 14J45
  • 14J26 (primary)
  • 14J10
  • 14E05 (secondary)