Skip to main content
Log in

A new fractional integral associated with the Caputo–Fabrizio fractional derivative

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

In this article, we introduce a new fractional integral (FI) associated with the Caputo–Fabrizio fractional derivative. As a theoretical example, we have solved a fractional boundary value problem (BVP) using the proposed FI. A Matlab script to solve this BVP is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Al-Refai, M., Jarrah, A.M.: Fundamental results on weighted Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 126, 7–11 (2019). https://doi.org/10.1016/j.chaos.2019.05.035

    Article  MathSciNet  MATH  Google Scholar 

  2. Al-Subaihi, I.A., Abdelaziz, O., Youness, C., El Hassan, E.: Exact solution of a nonlinear time-Caputo Fabrizio fractional dispersive equation. Gen. Lett. Math. 4(2), 67–75 (2018). https://doi.org/10.31559/glm2018.4.2.3

    Article  Google Scholar 

  3. Atanacković, T.M., Pilipović, S., Zorica, D.: Properties of the Caputo–Fabrizio fractional derivative and its distributional settings. Fract. Calc. Appl. Anal. 21(1), 29–44 (2018). https://doi.org/10.1515/fca-2018-0003

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai, Z., Lü, H.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495–505 (2005). https://doi.org/10.1016/j.jmaa.2005.02.052

    Article  MathSciNet  MATH  Google Scholar 

  5. Baleanu, D., Guvenc, Z.B., Machado, J.A.T.: New Trends in Nanotechnology and Fractional Calculus Applications, 1st edn. Springer, Amsterdam (2010). https://doi.org/10.1007/978-90-481-3293-5

    Book  MATH  Google Scholar 

  6. Błasik, M., Klimek, M.: Exact solution of two-term nonlinear fractional differential equation with sequential Riemann–Liouville derivatives. Adva. Theory Appl. Non-Integer Order Syst. (2013). https://doi.org/10.1007/978-3-319-00933-9_14

    Article  MATH  Google Scholar 

  7. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1(2), 73–85 (2015). https://doi.org/10.12785/pfda/010201

    Article  Google Scholar 

  8. Diethelm, K.: The Analysis of Fractional Differential Equations, An Application Oriented, Exposition Using Differential Operators of Caputo Type. Lecture Notes in Mathematics. Springer, Heidelbereg (2010)

    MATH  Google Scholar 

  9. Dokuyucu, M.A.: A fractional order alcoholism model via Caputo Fabrizio derivative. AIMS Math 5(2), 781–97 (2020). https://doi.org/10.3934/math.2020053

    Article  MathSciNet  Google Scholar 

  10. Farayola, M.F., Shafie, S., Siam, F.M., Khan, I.: Numerical simulation of normal and cancer cells’ populations with fractional derivative under radiotherapy. Comput. Methods Programs Biomed. 187, 105202 (2020). https://doi.org/10.1016/j.cmpb.2019.105202

    Article  Google Scholar 

  11. Ghanbari, B., Kumar, S., Kumar, R.: A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative. Chaos Solitons Fractals 133, 109619 (2020). https://doi.org/10.1016/j.chaos.2020.109619

    Article  MathSciNet  Google Scholar 

  12. Goufo, E.F.: Application of the Caputo–Fabrizio fractional derivative without singular kernel to Korteweg-de Vries-Burgers equation. Math. Modell. Anal. 21(2), 188–98 (2016). https://doi.org/10.3846/13926292.2016.1145607

    Article  MATH  Google Scholar 

  13. Goufo, E.F., Nieto, J.J.: Attractors for fractional differential problems of transition to turbulent flows. J. Comput. Appl. Math. 339, 329–42 (2018). https://doi.org/10.1016/j.cam.2017.08.026

    Article  MathSciNet  MATH  Google Scholar 

  14. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2003)

    MATH  Google Scholar 

  15. Khalouta, A., Kadem, A.: A new numerical technique for solving fractional Bratu’s initial value problems in the Caputo and Caputo–Fabrizio sense. J. Appl. Math. Comput. Mech. (2020). https://doi.org/10.17512/jamcm.2020.1.04

    Article  MathSciNet  MATH  Google Scholar 

  16. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland, Amsterdam (2006)

    MATH  Google Scholar 

  17. Kiryakova, V.: Generalised Fractional Calculus and Applications. Pitman Research Notes in Mathematics, vol. 301. Longman, Harlow (1994)

    MATH  Google Scholar 

  18. Lozada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1(2), 87–92 (2015). https://doi.org/10.12785/pfda/010202

    Article  Google Scholar 

  19. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011). https://doi.org/10.1016/j.cnsns.2010.05.027

    Article  MathSciNet  MATH  Google Scholar 

  20. Miller, K.S., Ross, B.: An Introduction to Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  21. Munkhammar, J.D.: Fractional calculus and the Taylor–Riemann series. Undergrad. J. Math. 6, 6 (2005)

    Google Scholar 

  22. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, New York (1999)

    MATH  Google Scholar 

  23. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon Breach, New York (1993)

    MATH  Google Scholar 

  24. Shaikh, A., Tassaddiq, A., Nisar, K.S., Baleanu, D.: Analysis of differential equations involving Caputo–Fabrizio fractional operator and its applications to reaction–diffusion equations. Adv. Differ. Equ. 2019(1), 1–4 (2019). https://doi.org/10.1186/s13662-019-2115-3

    Article  MathSciNet  MATH  Google Scholar 

  25. Vivas-Cruz, L.X., González-Calderón, A., Taneco-Hernández, M.A., Luis, D.P.: Theoretical analysis of a model of fluid flow in a reservoir with the Caputo–Fabrizio operator. Commun. Nonlinear Sci. Numer. Simul. (2020). https://doi.org/10.1016/j.cnsns.2020.105186

    Article  MathSciNet  MATH  Google Scholar 

  26. Ye, H., Huang, R.: Initial value problem for nonlinear fractional differential equations with sequential fractional derivative. Adv. Differ. Equ. (2015). https://doi.org/10.1186/s13662-015-0620-6

    Article  MathSciNet  MATH  Google Scholar 

  27. Yépez-Martínez, H., Gómez-Aguilar, J.F.: A new modified definition of Caputo–Fabrizio fractional-order derivative and their applications to the multi step homotopy analysis method (MHAM). J. Comput. Appl. Math. 346, 247–60 (2019). https://doi.org/10.1016/j.cam.2018.07.023

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Moumen Bekkouche.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moumen Bekkouche, M., Guebbai, H., Kurulay, M. et al. A new fractional integral associated with the Caputo–Fabrizio fractional derivative. Rend. Circ. Mat. Palermo, II. Ser 70, 1277–1288 (2021). https://doi.org/10.1007/s12215-020-00557-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-020-00557-8

Keywords

Mathematics Subject Classification

Navigation