Skip to main content
Log in

On a class of p(x)-Choquard equations with sign-changing potential and upper critical growth

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

Motived by the Hardy–Littlewood–Sobolev inequality for variable exponents, in this paper we use variational methods to prove the existence of a weak solution for a class of p(x)-Choquard equations with upper critical growth. Using truncation arguments and Krasnoselskii’s genus, we also show a multiplicity of solutions for a class of p(x)-Choquard equations with a nonlocal and non-degenerate Kirchhoff term. Also we show that the solutions obtained belong to \(L^{\infty }({\mathbb {R}}^{N})\) and have polynomial decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Mingione, G.: Regularity results for stationary electrorheological fluids. Arch. Ration. Mech. Anal. 164, 213–259 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Acerbi, E., Mingione, G.: Regularity results for electrorheological fluids: Stationary case. C. R. Math. Acad. Sci. Paris 334, 817–822 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    MathSciNet  MATH  Google Scholar 

  4. Alves, C.O.: Existence of radial solutions for a class of \(p(x)\)-Laplacian equations with critical growth. Differ. Integr. Eqts. 23, 113–123 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Alves, C.O., Barreiro, J.L.P.: Existence and multiplicity of solutions for a p(x)-Laplacian equation with critical growth. J. Math. Anal. Appl. 403, 143–154 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Alves, C.O., Ferreira, M.C.: Nonlinear perturbations of a p(x)-Laplacian equation with critical growth in \({\mathbb{R}}^{N}\). Math. Nach. 287(8–9), 849–868 (2014)

    MATH  Google Scholar 

  7. Alves, C.O., Tavares, L.S.: A Hardy–Littlewood–Sobolev-type inequality for variable exponents and applications to quasilinear Choquard equations involving variable exponent. Mediterr. J. Math. 16, 55 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Antontsev, S.N., Rodrigues, J.F.: On stationary thermorheological viscous flows. Ann. Univ. Ferrara Sez. VII Sci. Mat. 52, 19–36 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Ayazoglul, R., Saraç, Y., Şener, S., Alisoy G.: Existence and multiplicity of solutions for a Schrödinger–Kirchhof type equation involving the fractional \(p(., .)\)-Laplacian operator in \({\mathbb{R}}^{N}\), Collect. Math. (2020)

  10. Azorero, J.G., Alonso, I.P.: Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans. Am. Math. Soc. 323, 877–895 (1991)

    MathSciNet  MATH  Google Scholar 

  11. Azroul, E., Benkirane, A., Shimi, M., and Srati, M.: On a class of fractional \(p(x)\)-Kirchhoff type problems, Applicable Analysis, https://doi.org/10.1080/00036811.2019.1603372.

  12. Belchior, P., Bueno, H., Miyagaki, O.H., Pereira, G.A.: Remarks about a fractional Choquard equation: ground state, regularity and polynomial decay. Nonlinear Anal. 164, 38–53 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Cassani, D., Zhang, J.: Choquard-type equations with Hardy–Littlewood–Sobolev upper-critical growth. Adv. Nonlinear Anal. 8(1), 1184–1212 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383–1406 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Correa, F.J.S.A., Costa, A.C.R.: On a p(x)-Kirchhoff equation with critical exponent and an additional nonlocal term via truncation argument. Math. Nachr. 288, 1226–1240 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Fan, X.L.: On the sub-supersolution method for p(x)-Laplacian equations. J. Math. Anal. Appl. 330, 665–682 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Fan, X.L.: p(x)-Laplacian equations in \({\mathbb{R}}^{N}\) with periodic data and nonperiodic perturbations. J. Math. Anal. Appl. 341, 103–119 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Fan, X.L., Zhang, Q.H.: Existence of solutions for p(x)-Laplacian Dirichlet problems. Nonlinear Anal. 52, 1843–1852 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Fan, X.L., Zhao, D.: On the spaces \(L^{p(x)}(\Omega )\) and \(W^{1, p(x)}(\Omega )\). J. Math. Anal. Appl. 263, 424–446 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Fan, X.L., Shen, J.S., Zhao, D.: Sobolev embedding theorems for spaces \(W^{k, p(x)}(\Omega )\). J. Math. Anal. Appl. 262, 749–760 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Figueiredo, G.M.: Existence of positive solution for a Kirchhoff problem type with critical growth via truncation argument. J. Math. Anal. Appl. 401(2), 706–713 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Fröhlich, H.: Theory of electrical breakdown in ionic crystal. Proc. R. Soc. Ser. A 160(901), 230–241 (1937)

    Google Scholar 

  24. Fröhlich, H.: Electrons in lattice fields. Adv. Phys. 3(11) (1954)

  25. Fu, Y.Q., Zhang, X.: Multiple solutions for a class of \(p(x)\)-Laplacian equations in \({\mathbb{R}}^{N}\) involving the critical exponent. Proc. R. Soc. A 466, 1667–1686 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Hamdani, M.K., Harrabi, A., Mtiri, F., Repovs, D.: Existence and multiplicity results for a new \(p(x)\)-Kirchhoff problem. Nonlinear Anal. 190, 111–598 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Krasnoselskii, M.A.: Topological Methods in the Theory of Nonlinear Integral Equations. Mac Millan, New York (1964)

    Google Scholar 

  28. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)

    MATH  Google Scholar 

  29. Lee, J., Kim, J., Kim, Y.: Existence and multiplicity of solutions for Kirchhoff–Schrödinger type equations involving p(x)-Laplacian on the entire space \({\mathbb{R}}^{N}\). Nonlinear Anal. Real World Appl. 45, 620–649 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Lieb, E.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57(2):93–105 (1996/97)

  31. Lieb, E., Loss, M.: Analysis. Graduate Studies in Mathematics. AMS, Providence, RI (2001)

    MATH  Google Scholar 

  32. Lions, P.L.: The Choquard equation and related questions. Nonlinear Anal. 4, 1063–1072 (1980)

    MathSciNet  MATH  Google Scholar 

  33. Lions, P.L.: Compactness and topological methods for some nonlinear variational problems of mathematical physics. Nonlinear Probl. Present Fut. 17–34 (1982)

  34. Moroz, V., Van Schaftingen, J.: A guide to the Choquard equation. J. Fixed Point Theory Appl. 19(1), 773–813 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Moroz, V., Van Schaftingen, J.: Ground states of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Moroz, V., Van Schaftingen, J.: Existence of groundstates for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. 367, 6557–6579 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Moussaoui, A., Vélin, J.: Existence and a priori estimates of solutions for quasilinear singular elliptic systems with variable exponents. J. Elliptic Parabol. Equ. 4, 417–440 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Mukherjee, T., Sreenadh, K.: Critical growth elliptic problems with Choquard type nonlinearity: a survey. arXiv: 1811.04353 (2018)

  39. Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in MathematicsLecture Notes in MathematicsLecture Notes in Mathematics, vol. 1034. Springer, Berlin (1983)

    MATH  Google Scholar 

  40. Pekar, S.: Untersuchung über die Elektronentheorie der Kristalle. Akademie Verlag, Berlin (1954)

    MATH  Google Scholar 

  41. Radulescu, V.: Nonlinear elliptic equations with variable exponent: old and new. Nonlinear Anal. 121, 336–369 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Radulescu, V., Repovs, D.: Partial Differential Equations with Variable Exponents. Variational Methods and Qualitative Analysis. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL (2015)

    MATH  Google Scholar 

  43. Ragusa, M.A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 9, 710–728 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Ruzicka, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, vol. 1748. Springer, Berlin (2000)

    MATH  Google Scholar 

  45. Seok, J.: Limit profiles and uniqueness of ground states to the nonlinear Choquard equations. Adv. Nonlinear Anal. 8(1), 1083–1098 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Sirakov, B.: Existence and multiplicity of solutions of semi-linear elliptic equations in \({\mathbb{R}}^{N}\). Cal. Var. Partial Differ. Equ. 11, 119–142 (2000)

    MathSciNet  MATH  Google Scholar 

  47. Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Basel (1996)

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to express your sincere gratitude to the anonymous reviewers for their insightful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. V. Maia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maia, B.B.V. On a class of p(x)-Choquard equations with sign-changing potential and upper critical growth. Rend. Circ. Mat. Palermo, II. Ser 70, 1175–1199 (2021). https://doi.org/10.1007/s12215-020-00553-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-020-00553-y

Keywords

Mathematics Subject Classification

Navigation