Skip to main content
Log in

Ulam type stability for conformable fractional differential equations

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

In this paper, we present some new stability criteria in the sense of Ulam for the solutions of fractional differential equations involving the conformable fractional derivative. Our results are based on a fixed point alternative which is developed for generalized metric spaces. This study improves and extends the literature in this topic since there is no previous progress on the problem we consider. We also provide examples to illustrate our results in a separate section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Alsina, C., Ger, R.: On some inequalities and stability results relatoed to the exponential function. J. Inequal. Appl. 2, 373–380 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Aoki, T.: On the stability of the linear transformations in Banach spaces. J. Math. Soc. Jpn. 2, 64–66 (1950)

    MathSciNet  MATH  Google Scholar 

  4. Başcı, Y., Mısır, A., Öğrekçi, S.: On the stability problem of differential equations in the sense of Ulam. Results Math. (2020). https://doi.org/10.1007/s00025-019-1132-6

    Article  MathSciNet  MATH  Google Scholar 

  5. Başcı, Y., Öğrekçi, S., Mısır, A.: Hyers-Ulam-Rassias stability or Abel-Riccati type first-order differential equations. GU. J. Sci. 32(4), 1238–1252 (2019)

    MATH  Google Scholar 

  6. Başcı, Y., Öğrekçi, S., Mısır, A.: On Hyers-Ulam stability for fractional differential equations including the new Caputo-Fabrizio fractional derivative. Mediterr. J. Math. 16, 131 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Bojor, F.: Note on the stability of first order linear differential equations. Opuscula Math. 32, 67–74 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Borelli, C.: On Hyers-Ulam stability of Hosszú’s functional equation. Results Math. 26(3), 221–224 (1994)

    MathSciNet  MATH  Google Scholar 

  9. Brzdek, J., Popa, D., Xu, B.: The Hyers-Ulam stability of nonlinear recurrences. J. Math. Anal. Appl. 335, 443–449 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Cadariu, L., Radu, V.: Fixed point methods for the generalized stability of functional equations on a single variable. Fixed Point Theory A. 2008, 15 (2008)

    MATH  Google Scholar 

  11. Diaz, J.B., Margolis, B.: A fixed point theorem of alternative, for contractions on a genarilazed complete metric space. Bull. Am. Math. Soc. 74, 305–309 (2003)

    MATH  Google Scholar 

  12. Forti, G.L.: Comments on the core of the direct method for proving Hyers-Ulam stability of functional equations. J. Math. Anal. Appl. 295, 127–133 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Gao, Z., Yu, X.: Stability of nonlocal fractional langevin differential equations involving fractional integrals. J. Appl. Math. Comput. 53(1), 599–611 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Hyers, D.H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 27, 222–224 (1941)

    MathSciNet  MATH  Google Scholar 

  15. Jung, S.M.: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, New York (2001)

    MATH  Google Scholar 

  16. Jung, S.M.: A fixed point approach to the stability of differential equations \(y^{\prime }=f(x, y)\). Bull. Malays. Math. Sci. Soc. 33(1), 47–56 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Kucche, K.D., Shikhare, P.U.: Ulam-Hyers stability of integrodifferential equations in Banach spaces via Pachpatte’s inequality. Asian-Eur. J. Math. 11(04), 1850062 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Kucche, K.D., Shikhare, P.U.: Ulam stabilities for Volterra-Fredholm delay integrodifferential equations. Int. J. Nonlinear Anal. Appl. 9(2), 145–159 (2018)

    MATH  Google Scholar 

  20. Kucche, K.D., Shikhare, P.U.: Ulam stabilities via Pachpatte’s inequality for Volterra-Fredholm delay integrodifferential equations in Banach spaces. Note Mat. 38(1), 67–82 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Kucche, K.D., Shikhare, P.U.: Ulam stabilities for nonlinear volterra delay integro-differential equations. J. Cont. Math. Anal. (Armenian Academy of Sciences) 54(5), 276–287 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Kucche, K.D., Sutar, S.T.: On existence and stability results for nonlinear fractional delay differential equations. Bol. Soc. Paran. Mat. 36(4), 55–75 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Lu, G., Park, C.: Hyers-Ulam stability of general Jensen-type mappings in Banach algebras. Results Math. 66(3), 385–404 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Li, M., Wang, J.R., O’regan, D., : Existence and Ulam’s stability for conformable fractional differential equations with constant coefficients. Bull. Malays. Math. Sci. Soc. 42, 1791–1812 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Miura, T., Miyajima, S., Takahasi, S.H.: A characterization of Hyers-Ulam stability of first order linear differential operators. J. Math. Anal. Appl. 286, 136–146 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Miura, T., Miyajima, S., Takahasi, S.H.: Hyers-Ulam stability of linear differential operator with constant coefficients. Math. Nacr. 258, 90–96 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Obloza, M.: Hyers-Ulam stability of the linear differential equations. Rocznik. Nauk. Dydakt. Prace. Mat. 13, 259–270 (1993)

    MathSciNet  MATH  Google Scholar 

  28. Obloza, M.: Connections between Hyers and Lyapunov stability of the ordinary differential equations. Rocznik. Nauk. Dydakt. Prace. Mat. 14, 141–146 (1997)

    MathSciNet  MATH  Google Scholar 

  29. Oliveira, C.E., Souza, C.J.V.: Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations. Result Math. 73, 111 (2018)

    MathSciNet  Google Scholar 

  30. Petru, T.P., Petruşel, A., Yao, J.C.: Ulam-Hyers stability for operatorial equations and inclusions via nonself operators. Taiw. J. Math. 15, 2195–2212 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Popa, D.: Hyers-Ulam-Rassias stability of a linear recurrence. J. Math. Anal. Appl. 309, 591–597 (2005)

    MathSciNet  MATH  Google Scholar 

  32. Popa, D., Pugna, G.: Hyers-Ulam stability of Euler’s differential equation. Results Math. 69(3), 317–325 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Rassias, T.: Handbook of Functional Equations: Stability Theory. Springer, Berlin (1953)

    Google Scholar 

  34. Rassias, T.: On the stability of linear mappings in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)

    MathSciNet  MATH  Google Scholar 

  35. Shah, K., Ali, A., Bushnaq, S.: Hyers-Ulam stability analysis to implicit Cauchy problem of fractional differential equations with impulsive conditions. Math. Meth. Appl. Sci. 41, 8329–8341 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Sousa, J.V.d.C., Oliveira, E.C.d., : Mittag-leffler functions and the truncated $$\(\backslash \)mathcal v$$v-fractional derivative. Medit. J. Math. 14(6), 244 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Sousa, JVdC, Oliveira, ECd: A new truncated m-fractional derivative type unifying some fractional derivative types with classical properties. Int. J. Anal. Appl 16(1), 83–96 (2018)

    MATH  Google Scholar 

  38. Sousa, JVdC, Oliveira, ECd: Truncated v-fractional Taylor’s formula with applications. Trends Appl. Comput. Math. 19(3), 525–546 (2018)

    MathSciNet  Google Scholar 

  39. Takahasi, S.H., Miura, T., Miyajima, S.: The Hyers-Ulam stability constants of first order linear differential operators. Bull. Korean Math. Soc. 39, 309–315 (2002)

    MathSciNet  MATH  Google Scholar 

  40. Tunç, C., Biçer, E.: Hyers-Ulam-Rassias stability for a first order functional differential equation. J. Math. Fund. Sci. 47(2), 143–153 (2015)

    MathSciNet  Google Scholar 

  41. Ulam, S.M.: A Collection of Mathematical Problems. Interscience, New York (1960)

    MATH  Google Scholar 

  42. Wang, H., Liu, Y., Zhu, H.: Existence and stability for Hadamard p-type fractional functional differential equations. J. Appl. Math. Comput. 55(1), 549–562 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Wang, J., Li, X.: E\(\alpha \)-Ulam type stability of fractional order ordinary differential equations. J. Appl. Math. Comput. 45(1), 449–459 (2014)

    MathSciNet  Google Scholar 

  44. Wang, J., Lv, L., Zhou, Y.: Ulam stability and data dependence for fractional differential equations with Caputo derivative. Electron. J. Qual. Theory Differ. Equ. 63, 1–10 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Wang, J., Zhang, Y.: Ulam-Hyers-Mittag-Leffler stability of fractional-order delay differential equations. Optimization 63, 1181–1190 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Zheng, A., Feng, Y., Wang, W.: The Hyers-Ulam stability of the conformable fractional differential equation. Math. Aeterna 5(3), 485–492 (2015)

    Google Scholar 

  47. Öğreçi, S.: Stability of delay differential equations in the sense of Ulam on unbounded intervals. IJOCTA 9(2), 125–131 (2019)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Süleyman Öğrekçi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öğrekçi, S., Başcı, Y. & Mısır, A. Ulam type stability for conformable fractional differential equations. Rend. Circ. Mat. Palermo, II. Ser 70, 807–817 (2021). https://doi.org/10.1007/s12215-020-00532-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-020-00532-3

Keywords

Mathematics Subject Classification

Navigation