Skip to main content
Log in

15-Nodal quartic surfaces. Part II: the automorphism group

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

We describe a set of generators and defining relations for the group of birational automorphisms of a general 15-nodal quartic surface in the complex projective 3-dimensional space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baker, H.F.: Principles of Geometry. Higher Geometry (Cambridge Library Collection), vol. 4. Cambridge University Press, Cambridge (2010). Reprint of the 1925 original

    Google Scholar 

  2. Borcherds, R.: Automorphism groups of Lorentzian lattices. J. Algebra 111(1), 133–153 (1987)

    Article  MathSciNet  Google Scholar 

  3. Borcherds, R.E.: Coxeter groups, Lorentzian lattices, and \(K3\) surfaces. Int. Math. Res. Not. 1998(19), 1011–1031 (1998)

    Article  MathSciNet  Google Scholar 

  4. Coble, A.: The ten nodes of the rational sextic and of the Cayley symmetroid. Am. J. Math. 41(4), 243–265 (1919)

    Article  MathSciNet  Google Scholar 

  5. Conway, J.H.: The automorphism group of the \(26\)-dimensional even unimodular Lorentzian lattice. J. Algebra 80(1), 159–163 (1983)

    Article  MathSciNet  Google Scholar 

  6. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, vol. 290 of Grundlehren der Mathematischen Wissenschaften, third edn. Springer, New York (1999)

    Book  Google Scholar 

  7. Dolgachev, I.: 15-Nodal quartic surfaces. Part I: Quintic del Pezzo surfaces and congruences of lines in \(\mathbf{P}^3\) (2019). Preprint arXiv:1906.12295

  8. Dolgachev, I.V.: Classical Algebraic Geometry: A Modern View. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  9. Hudson, R.W.H.T.: Kummer’s Quartic Surface. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1990). With a foreword by W. Barth, Revised reprint of the 1905 original

    Google Scholar 

  10. Hutchinson, J.I.: The Hessian of the cubic surface. Bull. Am. Math. Soc. 5(6), 282–292 (1899)

    Article  Google Scholar 

  11. Hutchinson, J.I.: The Hessian of the cubic surface. II. Bull. Am. Math. Soc. 6(8), 328–337 (1900)

    Article  MathSciNet  Google Scholar 

  12. Hutchinson, J.I.: On some birational transformations of the Kummer surface into itself. Bull. Am. Math. Soc. 7(5), 211–217 (1901)

    Article  MathSciNet  Google Scholar 

  13. Keum, J.H.: Automorphisms of Jacobian Kummer surfaces. Compos. Math. 107(3), 269–288 (1997)

    Article  MathSciNet  Google Scholar 

  14. Kondo, S.: The automorphism group of a generic Jacobian Kummer surface. J. Algebraic Geom. 7(3), 589–609 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Nikulin, V.V.: Integer symmetric bilinear forms and some of their geometric applications. Izv. Akad. Nauk SSSR Ser. Mat., 43(1), 111–177, 238, (1979). English translation: Math USSR-Izv. 14 (1979), no. 1, 103–167 (1980)

  16. Nikulin, Viacheslav V.: Weil linear systems on singular \(K3\) surfaces. In: Algebraic Geometry and Analytic Geometry (Tokyo, 1990), ICM-90 Satellite Conference Proceedings, pp. 138–164. Springer, Tokyo (1991)

  17. Ohashi, H.: Enriques surfaces covered by Jacobian Kummer surfaces. Nagoya Math. J. 195, 165–186 (2009)

    Article  MathSciNet  Google Scholar 

  18. Pjateckiĭ-Šapiro, I.I., Šafarevič, I.R.: Torelli’s theorem for algebraic surfaces of type \(\text{ K }3\). Izv. Akad. Nauk SSSR Ser. Mat. 35, 530–572 (1971). Reprinted in I. R. Shafarevich, Collected Mathematical Papers, Springer-Verlag, Berlin, 1989, pp. 516–557

    MathSciNet  Google Scholar 

  19. Saint-Donat, B.: Projective models of \(K-3\) surfaces. Am. J. Math. 96, 602–639 (1974)

    Article  MathSciNet  Google Scholar 

  20. Shimada, I.: Projective models of the supersingular \(K3\) surface with Artin invariant 1 in characteristic 5. J. Algebra 403, 273–299 (2014)

    Article  MathSciNet  Google Scholar 

  21. Shimada, I.: An algorithm to compute automorphism groups of \(K3\) surfaces and an application to singular \(K3\) surfaces. Int. Math. Res. Not. IMRN 22, 11961–12014 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Shimada, I.: The elliptic modular surface of level 4 and its reduction modulo 3 (2018). Preprint arXiv:1806.05787

  23. Shimada, I.: 15-nodal quartic surfaces. Part II: the automorphism group: computational data (2019). http://www.math.sci.hiroshima-u.ac.jp/~shimada/K3andEnriques.html

  24. Shimada, I., Veniani, D.C.: Enriques involutions on singular \(K3\) surfaces of small discriminants. Preprint arXiv:1902.00229, Ann. Sc. Norm. Super. Pisa Cl. Sci. (2019, to appear)

  25. Shioda, T.: Some results on unirationality of algebraic surfaces. Math. Ann. 230(2), 153–168 (1977)

    Article  MathSciNet  Google Scholar 

  26. The GAP Group: GAP—Groups, Algorithms, and Programming 4.8.6; 2016. http://www.gap-system.org

  27. Vinberg, È.B., Shvartsman, O.V.: Discrete groups of motions of spaces of constant curvature. In Geometry, II, Encyclopaedia of Mathematical Sciences, vol. 29, pp. 139–248. Springer, Berlin (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Shimada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author was supported by JSPS KAKENHI Grant Nos. 15H05738, 16H03926, and 16K13749.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgachev, I., Shimada, I. 15-Nodal quartic surfaces. Part II: the automorphism group. Rend. Circ. Mat. Palermo, II. Ser 69, 1165–1191 (2020). https://doi.org/10.1007/s12215-019-00464-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-019-00464-7

Keywords

Mathematics Subject Classification

Navigation