Abstract
In this paper, we obtain some properties of \((\alpha , \beta )\)-normal and we prove following assertions.
-
(i)
If T is \((\alpha , \beta )\)-normal operator, S is an invertible operator and X is a Hilbert–Schmidt operator such that \(TX=XS\), then \(T^{*}X=XS^{*}\).
-
(ii)
If T is totally \((\alpha , \beta )\)-normal operator, then the range of generalized derivation \(\delta _{T}: \mathcal {B}( {\mathcal H}) \ni X \rightarrow TX- XT \in \mathcal {B}( {\mathcal H}) \) is orthogonal to its kernel.
This is a preview of subscription content, log in to check access.
References
- 1.
Berberian, S.K.: Extensions of a theorem of Fuglede and Putnam. Proc. Am. Math. Soc. 71, 113–114 (1978)
- 2.
Conway, J.B.: A Course in Functional Analysis, 2nd edn. Springer, New York (1990)
- 3.
Bachir, A., Lombarkia, F.: Fuglede–Putnam’s theorem for w-hyponormal operators. Math. Inequal. Appl. 15, 777–786 (2012)
- 4.
Bachir, A.: Fuglede–Putnam theorem for \(w\)-hyponormal or class \({\cal{Y}}\) operators. Ann. Funct. Anal. 4(1), 53–60 (2013)
- 5.
Berberian, S.K.: Approximate proper vectors. Proc. Am. Math. Soc. 13, 111–114 (1962)
- 6.
Brown, A., Percy, C.: Spectra of tensor products of operators. Proc. Am. Math. Soc. 17, 162–166 (1966)
- 7.
Dragomir, S.S., Moslehian, M.S.: Some inequalities for \((\alpha , \beta )\)-normal operators in Hilbert spaces. Series Mathematics and Informatics, pp. 39–47 (2008)
- 8.
Douglas, R.G.: On majorization, factorization and range inclusion of operators on Hilbert space. Proc. Am. Math. Soc. 17, 413–415 (1966)
- 9.
Furuta, T.: An extenstion of the Fuglede theorem to subnormal operators using a Hilbert–Schmidt norm inequality. Proc. Am. Math. Soc. 81, 240–242 (1981)
- 10.
Hou, J.C.: On tensor products of operators. Acta Math. Sin. 91, 195–202 (1993)
- 11.
Moore, R.L., Rogers, D.D., Trent, T.T.: A note on intertwining M-hyponormal operators. Proc. Am. Math. Soc. 83, 514–516 (1981)
- 12.
Mecheri, S.: Finite operators and orthogonality. Nihonkai Math. 19, 53–60 (2008)
- 13.
Mecheri, S.: A generalization of Fuglede–Putnam theorem. J. Pure Math. 21, 31–38 (2004)
- 14.
Moslehian, M.S.: On \((\alpha , \beta )\)-normal operators in Hilbert spaces, pp. 39–47. Problem, IMAGE (2007)
- 15.
Senthilkumar, D., Sherin Joy, S.M.: On totally \((\alpha, \beta )\)-normal operators. Far East J. Math. Sci. (FJMS) 71(1), 151–167 (2012)
- 16.
Pagacz, P.: The Putnam–Fuglede property for paranormal and *-paranormal operators. Opusc. Math. 33(3), 565–574 (2013)
- 17.
Putnam, C.R.: On the normal operators on Hilbert space. Am. J. Math. 73, 357–362 (1951)
- 18.
Rashid, M.H.M., Noorani, M.S.M.: On relaxation normality in the Fulgede–Putnam’s theorem for a quasi-class \({\cal{A}}\) operators. Tamkang. J. Math. 40, 307–312 (2009)
- 19.
Stochel, J.: Seminormality of operators from their tensor product. Proc. Am. Math. Soc. 124, 435–440 (1996)
- 20.
Uchiyama, A., Tanahashi, K.: Fuglede–Putnam’s theorem for p-hyponormal or log-hyponormal operators. Glasgow Math. J. 44, 397–410 (2002)
- 21.
Takahashi, K., Uchiyama, M.: Every \(C_{00}\) contractions with Hilbert-Schmidt defect operator is of class \(C_{0}\). J. Oper. Theory 12, 331–335 (1983)
- 22.
Yoshino, T.: Remark on the generalized Putnam–Fuglede theorem. Proc. Am. Math. Soc. 95, 571–572 (1985)
- 23.
Williams, J.P.: Finite operators. Proc. Am. Math. Soc. 26, 129–135 (1970)
- 24.
Wielandt, H.: Helmut ber die Unbeschrnktheit der Operatoren der Quantenmechanik, (German). Math. Ann. 121, 21 (1949)
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bachir, A., Prasad, T. Fuglede–Putnam theorem for \((\alpha , \beta )\)-normal operators. Rend. Circ. Mat. Palermo, II. Ser 69, 1243–1249 (2020). https://doi.org/10.1007/s12215-019-00454-9
Received:
Accepted:
Published:
Issue Date:
Keywords
- Fuglede–Putnam theorem
- Hyponormal operator
- \((\alpha</Keyword> <Keyword>\beta )\)-Normal operator
- Orthogonality
Mathematics Subject Classification
- 47B20
- 47A10