Skip to main content
Log in

Strongly algebraically closed orthomodular near semirings

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript


The notion of \(q^\prime \)-compactness on a modular near ring is introduced and considered. Our aim is to show that if an induced lattice with an antitone involution on an orthogonal near semiring is complete and \(q^\prime \)-compact, then the induced lattice is a strongly algebraically closed lattice. In particular, an open question proposed by A. Di-Nola, G. Georgescu and A. Iorgulescu about the connections of pseudo-BL algebras with other algebraic structures in Di Nola et al. (Mult Val Logic 8:717–750, 2002) is answered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Beran, L.: Orthomodular Lattices: Algebraic Approach, Mathematics and Its Applications. Springer, Berlin (2011)

    Google Scholar 

  2. Bonzio, S., Chajda, I., Ledda, A.: Representing quantum structures as near semirings. Log. J. IGPL 24, 1–24 (2016)

    Article  MathSciNet  Google Scholar 

  3. Brandt, H.: Uber eine Verallgemeinerung der Gruppen-begriffes. Math. Ann. 96, 360–366 (1926)

    Article  Google Scholar 

  4. Chajda, I., Fazio, D., Ledda, A.: On the structure theory of Łukasiewicz near semirings. Log. J. IGPL (2018)

  5. Chajda, I., Halas, R., Kuhr, J.: Semilattice Structures. Research and Exposition in Mathematics. Heldermann, Berlin (2007)

    MATH  Google Scholar 

  6. Chang, C.C.: Algebraic analysis of many valued logics. Trans. Am. Math. Soc. 88, 467–490 (1958)

    Article  MathSciNet  Google Scholar 

  7. Daniyarova, E., Miasnikov, A., Remeslennikov, V.: Algebraic geometry over algebraic structures II: foundations. Fund. i prikl. mat. 17(1), 65–106 (2012)

    MathSciNet  Google Scholar 

  8. Daniyarova, E., Myasnikov, A., Remeslennikov, V.: Algebraic geometry over algebraic structures III: equationally noetherian property and compactness. Southeast Asian Bull. Math. 35, 35–68 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Daniyarova, E., Miasnikov, A., Remeslennikov, V.: Unification theorems in algebraic geometry. Algebra Discrete Math. 1, 80–112 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Di Nola, A., Gerla, B.: Algebras of Lstrok; Łukasiewicz Logic and their semiring reducts. In: Litvinov, G.L., Maslov, V.P. (eds) Proceedings of the Conference on Idempotent Mathematics and Mathematial Physics (2004)

  11. Di Nola, A., Georgescu, G., Iorgulescu, A.: Pseudo-BL algebras: Part II. Mult. Val. Logic 8, 717–750 (2002)

    MATH  Google Scholar 

  12. Georgescu, G., Iorgulescu, A.: Pseudo-BL algebras, a noncommutative extension of BL-algebras (Abstract). In: The Fifth International Conference FSTA 2000 on Fuzzy Sets Theory and Its Application, February, pp. 90–92 (2000)

  13. Hajek, P.: Fuzzy logics with noncommutative conjuctions. J. Log. Comput. 13, 469–479 (2003)

    Article  Google Scholar 

  14. Hajek, P.: Metamathematics of Fuzzy Logic (Trends in Logic, StudiaLogica Library). Kluwer, Dordrecht (1998)

    Book  Google Scholar 

  15. Kalmbach, G.: Orthomodular Lattices. Academic Press Inc (London) Ltd., London (1983)

    MATH  Google Scholar 

  16. Kim, K.H., Yon, Y.H.: Dual BCK-algebra and MV-algebra. Sci. Math. Jpn. e-2007, 393–399 (2007)

  17. Kuhr, J.: Pseudo BL-algebras and DRL-monoids. Math. Bohem. 128, 199–202 (2003)

    Article  MathSciNet  Google Scholar 

  18. Lacava, F.: Sulle classi delle \(\ell \)-algebre e degli \(\ell \)-gruppi abeliani algebricamente chiusi. Boll. Un. Mat. Ital. B(7)(1), 703–712 (1987)

    MathSciNet  MATH  Google Scholar 

  19. Molkhasi, A.: On some strongly algebraically closed semirings. J. Intell. Fuzzy Syst. 36(6), 6393–6400 (2019)

    Article  Google Scholar 

  20. Molkhasi, A.: On strongly algebraically closed lattices. J. Sib. Fed. Univ. Math. Phys. 9(2), 202–208 (2016)

    Article  MathSciNet  Google Scholar 

  21. Motamed, S., Torkzadeh, L.: A new class of BL-algebras. Soft. Comput. 21, 686–693 (2017)

    Article  Google Scholar 

  22. Myasnikov, A., Remeslennikov, V.: Algebraic geometry over groups II: logical foundations. J. Algebra 234, 225–276 (2000)

    Article  MathSciNet  Google Scholar 

  23. Plotkin, B.: Algebras with the same (algebraic) geometry. Proc. Steklov Inst. Math. 242, 165–196 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Ptak, P., Pulmannova, S.: Orthomodular Structures as Quantum Logics. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  25. Schmid, J.: Algebraically and existentially closed distributive lattices. Zeitschr Math. Logik U. G. M. 25, 525–530 (1979)

    Article  MathSciNet  Google Scholar 

  26. Shevlyakov, A.: Algebraic geometry over boolean algebras in the language with constants. J. Math. Sci. 206, 724–757 (2015)

    Article  Google Scholar 

  27. Turunen, E.: RS–BL-algebras are MV-algebras. Iran. J. Fuzzy Syst. 6, 153–154 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Walendziak, A.: On commutative BE-algebras. Sci. Math. Jpn. 69, 585–588 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ali Molkhasi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molkhasi, A., Shum, K.P. Strongly algebraically closed orthomodular near semirings. Rend. Circ. Mat. Palermo, II. Ser 69, 803–812 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Mathematics Subject Classification