Periodicity and continuous dependence in iterative differential equations

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


In this work, we study the existence, uniqueness and continuous dependence of periodic solutions of the iterative differential equation

$$\begin{aligned} x^{\prime }(t)=\sum \limits _{m=1}^{N}\sum \limits _{l=1}^{\infty }C_{l,m}(t)\left( x^{[m]}(t)\right) ^{l}+\frac{d}{dt}g\left( t,x^{[1]}(t),x^{[2]} (t),\ldots ,x^{[N]}(t)\right) +h(t). \end{aligned}$$

Using Schauder’s fixed point theorem, we obtain the existence of periodic solution and by the contraction mapping principle we obtain the uniqueness. An example is given to illustrate this work. The results obtained here extend the work of Zhao and Feckan [14].

This is a preview of subscription content, log in to check access.


  1. 1.

    Cabada, A.: Green’s Functions in the Theory of Ordinary Differential Equations. Springer, New York (2014)

    Google Scholar 

  2. 2.

    Eder, E.: The functional differential equation \(x^{\prime }(t)=x(x(t))\). J. Differ. Equ. 54, 390–400 (1984)

    Article  Google Scholar 

  3. 3.

    Feckan, M.: On certain type of functional differential equations. Math. Slovaca 43, 39–43 (1993)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Kendre, S.D., Kharat, V.V., Narute, R.: On existence of solution for iterative integrodifferential equations. Nonlinear Anal. Differ. Equ. 3, 123–131 (2015)

    Article  Google Scholar 

  5. 5.

    Liua, B., Tunc, C.: Pseudo almost periodic solutions for a class of first order differential iterative equations. Appl. Math. Lett. 40, 29–34 (2015)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Si, J.G., Wang, X.P.: Analytic solutions of a second-order iterative functional differential equation. Comput. Math. Appl. 43, 81–90 (2002)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Smart, D.R.: Fixed Point Theorems. Cambridge University Press, Cambridge (1980)

    Google Scholar 

  8. 8.

    Stanek, S.: Global properties of solutions of the functional differential equations \(x(t)x^{\prime }(t)=Kx(x(t))\),\( 0<\left|K\right|<1\). Funct. Differ. Equ. 9, 527–550 (2002)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Tunc, C.: On the existence of periodic solutions of functional differential equations of the third order. Appl. Comput. Math. 15(2), 189–199 (2016)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Tunc, C., Erdur, S.: New qualitative results for solutions of functional differential equations of second order. Discrete Dyn. Nat. Soc. 2018, 1–13 (2018)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Wang, K.: On the equation \(x^{\prime }(t)=f(x(x(t)))\). Funkc. Ekvacioj 33, 405–425 (1990)

    MATH  Google Scholar 

  12. 12.

    Wang, X.P., Si, J.G.: Analytic solutions of an iterative functional differential equation. J. Math. Anal. Appl. 262, 490–498 (2001)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Yang, D., Zhang, W.: Solutions of equivariance for iterative differential equations. Appl. Math. Lett. 17, 759–765 (2004)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Zhao, H.Y., Feckan, M.: Periodic solutions for a class of differential equations with delays depending on state. Math. Commun. 23, 29–42 (2018)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Zhao, H.Y., Liu, J.: Periodic solutions of an iterative functional differential equation with variable coefficients. Math. Methods Appl. Sci 40, 286–292 (2017)

    MathSciNet  Article  Google Scholar 

Download references


The authors would like to thank the anonymous referee for his valuable comments.

Author information



Corresponding author

Correspondence to Abdelouaheb Ardjouni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mansouri, B., Ardjouni, A. & Djoudi, A. Periodicity and continuous dependence in iterative differential equations. Rend. Circ. Mat. Palermo, II. Ser 69, 561–576 (2020).

Download citation


  • Fixed point
  • Periodic solutions
  • Stability
  • Iterative differential equations

Mathematics Subject Classification

  • Primary 34K13
  • 34A34
  • Secondary 34K30
  • 34L30