Field-driven magnetization reversal in a three-dimensional network of ferromagnetic ellipsoidal samples

  • Sharad DwivediEmail author
  • Shruti Dubey


The field-driven magnetization reversal in a three-dimensional network of ferromagnetic particles of ellipsoidal shape is analytically studied with an emphasis on coupling among the particles. The considered governing dynamics is the Landau–Lifshitz equation of micromagnetism which delineates the motion of magnetization inside the ferromagnetic medium. The analytical results explicate the stability and controllability (reversal) of the relevant configurations of magnetization which are established under the sufficient conditions. To reverse the magnetization direction in the particles, we use the control as a magnetic field generated by a dipole whose position and strength can be chosen.


Ferromagnetic material Landau–Lifshitz equation Stability Magnetization reversal Domain walls Micromagnetics 

Mathematics Subject Classification

Primary 35B35 34D05 35Q60 Secondary 35K55 



The authors would like to thank the anonymous referees and the handling editor for their careful reading and invaluable remarks/suggestions.


  1. 1.
    Binns, C.: Nanomagnetism: Fundamentals and Applications, vol. 6. Newnes, Oxford (2014)Google Scholar
  2. 2.
    Bondarenko, P.V.: Boundary waves in ferromagnetically ordered two-dimensional arrays of magnetic dots. Tech. Phys. Lett. 40(9), 813–815 (2014)CrossRefGoogle Scholar
  3. 3.
    Levy, J.C.S.: Magnetic Structures of 2D and 3D Nanoparticles: Properties and Applications. CRC Press, Boca Raton (2016)CrossRefGoogle Scholar
  4. 4.
    Alouges, F., Beauchard, K.: Magnetization switching on small ferromagnetic ellipsoidal samples. ESAIM Control Optim. Calc. Var. 15, 676–711 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Agarwal, S., Carbou, G., Labbé, S., Prieur, C.: Control of a network of magnetic ellipsoidal samples. Math. Control Relat. Fields 1(2), 129–147 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dubey, S., Dwivedi, S.: On controllability of a two-dimensional network of ferromagnetic ellipsoidal samples. Differ. Equ. Dyn. Syst. 27(1–3), 277–297 (2019)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Landau, L., Lifschitz, E.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjetunion 8(153), 101–114 (1935)Google Scholar
  8. 8.
    Brown, W.F.: Micromagnetics. Wiley, New York (1963)zbMATHGoogle Scholar
  9. 9.
    Aharoni, A.: Introduction to the Theory of Ferromagnetism, vol. 109. Oxford University Press, Oxford (2000)Google Scholar
  10. 10.
    Hubert, A., Schäfer, R.: Magnetic Domains: The Analysis of Magnetic Microstructures. Springer, Berlin (1998)Google Scholar
  11. 11.
    Alouges, F., Soyeur, A.: On global weak solutions for Landau–Lifshitz equations: existence and nonuniqueness. Nonlinear Anal. Theory Methods Appl. 18, 1071–1084 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Carbou, G., Fabrie, P.: Time average in micromagnetism. J. Differ. Equ. 147, 383–409 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Boling, G., Fengqiu, S.: Global weak solution for the Landau–Lifshitz–Maxwell equation in three space dimensions. J. Math. Anal. Appl. 211, 326–346 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Guo, B.L., Yang, G.S.: Existence and stability of static solutions of the Landau–Lifshitz equation with multi-direct effective field. Acta Math. Sin. 20(6), 1135–1152 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Visintin, A.: On Landau Lifschitz equation for ferromagnetism. Jpn. J. Appl. Math. 1, 69–84 (1985)CrossRefzbMATHGoogle Scholar
  16. 16.
    Carbou, G., Fabrie, P.: Regular solutions for Landau–Lifschitz equation in a bounded domain. Differ. Integr. Equ. 14, 213–229 (2001)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Carbou, G., Fabrie, P.: Regular solutions for Landau–Lifschitz equation in \(\mathbb{R}^{3}\). Commun. Appl. Anal. 5, 17–30 (2001)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Yunmei, C., Shijin, D., Boling, G.: Partial regularity for two dimensional Landau–Lifshitz equations. Acta Math. Sin. 14(3), 423–432 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Abert, C., Exl, L., Selke, G., Drews, A., Schrefl, T.: Numerical methods for the stray-field calculation: a comparison of recently developed algorithms. J. Magn. Magn. Mater. 326, 176–185 (2013)CrossRefGoogle Scholar
  20. 20.
    Ban̆as, L.U., Bartels, S., Prohl, A.: A convergent implicit finite element discretization of the Maxwell–Landau–Lifshitz–Gilbert equation. SIAM J. Numer. Anal. 46, 1399–1422 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Labbé, S.: Fast computation for large magnetostatic systems adapted for micromagnetism. SIAM J. Sci. Comput. 26, 2160–2175 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Carbou, G., Labbé, S.: Stability for static walls in ferromagnetic nanowires. Discrete Contin. Dyn. Syst. Ser. B 6, 273–290 (2006)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Carbou, G., Labbé, S.: Stabilization of walls for nanowires of finite length. ESAIM Control Optim Calc. Var. 18, 1–21 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Carbou, G., Labbé, S., Trélat, E.: Control of travelling walls in a ferromagnetic nanowire. Discrete Contin. Dyn. Syst. Ser. S 1, 51–59 (2008)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Labbé, S., Privat, Y., Trélat, E.: Stability properties of steady-states for a network of ferromagnetic nanowires. J. Differ. Equ. 253, 1709–1728 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Dwivedi, S., Dubey, S.: On dynamics of current-induced static wall profiles in ferromagnetic nanowires governed by the Rashba field. Int. J. Appl. Comput. Math. 3(1), 27–42 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Dwivedi, S., Dubey, S.: On the stability of steady-states of a two-dimensional system of ferromagnetic nanowires. J. Appl. Anal. 23(2), 89–100 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Carbou, G.: Stability of static walls for a three-dimensional model of ferromagnetic material. J. Math. Pures Appl. 93, 183–203 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Osborn, J.A.: Demagnetizing factors of the general ellipsoid. Phys. Rev. 67, 351–357 (1945)CrossRefGoogle Scholar
  30. 30.
    Griffiths, D.J.: Introduction to Electrodynamics, 3rd edn. Pearson Benjamin Cummings, San Francisco (2008)Google Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics, SRM Research InstituteSRM Institute of Science and TechnologyChennaiIndia
  2. 2.Department of MathematicsIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations