Skip to main content
Log in

Abstract

In this article we provide several exact formulae to calculate the probability that a random triangle chosen within a planar region (any Lebesgue measurable set of finite measure) contains a given fixed point O. These formulae are in terms of one integration of an appropriate function, with respect to a density function which depends of the point O. The formulae provide another way to approach the Sylvester’s four-point problem. A stability result is derived for the probability. We recover the known probability in the case of an equilateral triangle and its center of mass: \(\frac{2}{27}+20\frac{\ln 2}{81}\) (Halász and Kleitman in Stud Appl Math 53:225–237, 1974; Prékopa in Period Math Hung 2:259–282, 1972). We compute this probability in the case of a regular polygon and its center of mass for the point O. Other families of regions are studied. For the family of Limaçons \(r=a+\cos t, a>1\), and O the origin of the polar coordinates, the probability is \(\frac{1}{4}-\frac{12a^2(4a^2+1)}{(2a^2+1)^3\pi ^2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Baddeley, A.: A fourth note on recent research in geometrical probability. Adv. Appl. Prob. 9, 824–860 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Eisenberg, B., Sullivan, R.: Random triangles in \(n\) dimensions. Am. Math. Mon. 103(4), 308–318 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Eugen, J.: Ionascu and Gabriel Prajitura. Things to do with a broken stick. Int. J. Geom. 2(2), 5–30 (2013)

    Google Scholar 

  4. Halász, S., Kleitman, D.J.: A note on random triangles. Stud. Appl. Math. 53, 225–237 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hall, G.R.: Acute triangles in the \(n\)-ball. J. Appl. Prob. 19, 712–715 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Henze, N.: Random triangles in convex regions. J. Appl. Prob. 20, 111–125 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kendall, M.G., Moran, P.A.P.: Geometrical Probability. Hafner, New York (1963)

    MATH  Google Scholar 

  8. Langford, E.: The probability that a random triangle is obtuse. Biometrika 56(3), 689–690 (1969)

    Article  MATH  Google Scholar 

  9. Prékopa, A.: On the vertices of random convex polyhedra. Period. Math. Hung. 2, 259–282 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  10. Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  11. Wagne, U., Welzl, E.: A continuous analogue of the upper bound theorem. Discrete Comput. Geom. 26, 205–219 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugen J. Ionaşcu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ionaşcu, E.J. Random triangles in planar regions. Rend. Circ. Mat. Palermo, II. Ser 68, 363–383 (2019). https://doi.org/10.1007/s12215-018-0364-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-018-0364-8

Keywords

Mathematics Subject Classification

Navigation