Advertisement

Superposition operators between logarithmic Bloch spaces

  • Renny J. Malavé-Malavé
  • Julio C. Ramos-Fernández
Article
  • 50 Downloads

Abstract

We characterize all entire functions \(\phi \) that maps a logarithmic Bloch-type space \({\mathcal {B}}^\alpha _{\log ^\beta }\) into another of the same kind by superposition. As consequences of our study, we obtain several results about the boundedness of superposition operators acting between \(\alpha \)-Bloch spaces, Bloch–Orlicz spaces among others.

Keywords

Bloch-type spaces Superposition operator Entire function 

Mathematics Subject Classification

30D45 47B33 

Notes

Acknowledgements

The authors wish to express their sincere gratitude to the anonymous referee for a thorough review and insightful suggestions.

References

  1. 1.
    Álvarez, V., Márquez, M.A., Vukotić, D.: Superposition operators between the Bloch space and Bergman spaces. Ark. Mat. 42, 205–216 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Appell, J., Zabrejko, P.P.: Nonlinear Superposition Operators. Cambridge University Press, Cambridge (1990)CrossRefzbMATHGoogle Scholar
  3. 3.
    Attele, K.: Toeplitz and Hankel operators on Bergman spaces. Hokkaido Math. J. 21, 279–293 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bierstedt, K.D., Meise, R., Summers, W.H.: A projective description of weighted inductive limits. Trans. Am. Math. Soc. 272, 107–160 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bonet, J., Domański, P., Lindström, M.: Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic function. Can. Math. Bull. 42(2), 139–148 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bonet, J., Vukotić, D.: Superposition operators between weighted Banach spaces of analytic functions of controlled growth. Mon. Math. 170, 311–323 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Boyd, C., Rueda, P.: Holomorphic superposition operators between Banach function spaces. J. Aust. Math. Soc. 96(2), 186–197 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brown, L., Shields, A.L.: Multipliers and cyclic vectors in the Bloch space. Mich. Math. J. 38, 141–146 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Buckley, S.M., Fernández, J.L., Vukotić, D.: Superposition operators on Dirichlet type spaces. Rep. Univ. Jyväskylä 83, 41–61 (2001)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Buckley, S.M., Vukotić, D.: Univalent interpolation in Besov space and superposition into Bergman spaces. Potential Anal. 29, 1–16 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cámera, G., Giménez, J.: Nonlinear superposition operators acting on Bergman spaces. Compos. Math. 93, 23–35 (1994)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Castillo, R.E., Ramos-Fernández, J.C., Salazar, M.: Bounded superposition operators between Bloch–Orlicz and \(\alpha \)-Bloch spaces. Appl. Math. Comput. 218, 3441–3450 (2011)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Girela, D., Márquez, M.A.: Superposition operators between \(Q_p\) spaces and Hardy spaces. J. Math. Anal. Appl. 364, 463–472 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hyvärinen, O., Kemppainen, M., Lindström, M., Rautio, A., Saukko, E.: The essential norm of weighted composition operators on weighted Banach spaces of analytic functions. Integral Equ. Oper. Theory 72(2), 151–157 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Levin, B.Ya.: Lectures on Entire Functions, Translations of Mathematical Monographs. American Mathematical Society, Providence (1996)Google Scholar
  16. 16.
    Malavé-Ramírez, M.T., Ramos-Fernández, J.C.: The associated weight and the essential norm of weighted composition operators. Banach J. Math. Anal. 9(1), 144–158 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ramos-Fernández, J.C.: Composition operators on Bloch–Orlicz type spaces. Appl. Math. Comput. 217, 3392–3402 (2010)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Ramos-Fernández, J.C.: Bounded superposition operators between weighted Banach spaces of analytic functions. Appl. Math. Comput. 219, 4942–4949 (2013)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Ramos-Fernández, J.C.: Logarithmic Bloch spaces and their weighted composition operators. Rend. Circ. Mat. Palermo 65, 159–174 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Stević, S.: On new Bloch-type spaces. Appl. Math. Comput. 215, 841–849 (2009)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Xiong, C.: Superposition operators between \(Q_p\) spaces and Bloch-type spaces. Complex Var. Theory Appl. 50, 935–938 (2005)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Xu, W.: Superposition operators on Bloch-type spaces. Comput. Methods Funct. Theory 7, 501–507 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ye, S.: Weighted composition operator on the logarithmic Bloch space. Bull. Korean Math. Soc. 47, 527–540 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Yoneda, R.: The composition operators on weighted Bloch space. Arch. Math. (Basel) 78, 310–317 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zhu, K.: Bloch type spaces of analytic functions. Rocky Mt. J. Math. 23, 1143–1177 (1993)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  • Renny J. Malavé-Malavé
    • 1
  • Julio C. Ramos-Fernández
    • 2
  1. 1.Departamento de MatemáticaUniversidad de OrienteCumanáVenezuela
  2. 2.Proyecto Curricular de Matemáticas, Facultad de Ciencias y EducaciónUniversidad Distrital Francisco José de CaldasBogotáColombia

Personalised recommendations