Abstract
The notion of hermiticity, in complex Banach \(^{*}\)-algebras, is related to the existence of a certain order structure. We also show that any hermitian Banach algebra, containing at least one self-adjoint element whose spectrum is not an interval, contains necessarily algebraic zero-divisors. Some consequences are given.
Similar content being viewed by others
References
Bonsall, F.F., Duncan, J.: Complete Normed Algebra, Ergebnisse der Mathematik. Band, vol. 80. Springer, New York (1973)
el Kinani, A., Nejjari, M.A., Oudadess, M.: Cônes normaux et structure d’algèbres de Banach involutives. Ann. Sc. Math. Qu ébec. 26(2), 161–169 (2002)
Nejjari, M.A.: On a natural ordering in strictly real Banach algebras. Mediterr. J. Math. (2015). doi:10.1007/s00009-01560651-y
Miller, J.B.: The natural ordering on strictly real Banach algebras. Math. Proc. Cumb. Phil. Soc. 539–556 (1989)
Ptàk, V.: Banach algebras with involution. Manuscr. Math. 6, 245–290 (1972)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nejjari, M.A. Some characterizations of hermitian Banach algebras. Rend. Circ. Mat. Palermo, II. Ser 66, 295–301 (2017). https://doi.org/10.1007/s12215-016-0253-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12215-016-0253-y