Skip to main content
Log in

Some characterizations of hermitian Banach algebras

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

The notion of hermiticity, in complex Banach \(^{*}\)-algebras, is related to the existence of a certain order structure. We also show that any hermitian Banach algebra, containing at least one self-adjoint element whose spectrum is not an interval, contains necessarily algebraic zero-divisors. Some consequences are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonsall, F.F., Duncan, J.: Complete Normed Algebra, Ergebnisse der Mathematik. Band, vol. 80. Springer, New York (1973)

  2. el Kinani, A., Nejjari, M.A., Oudadess, M.: Cônes normaux et structure d’algèbres de Banach involutives. Ann. Sc. Math. Qu ébec. 26(2), 161–169 (2002)

    MATH  Google Scholar 

  3. Nejjari, M.A.: On a natural ordering in strictly real Banach algebras. Mediterr. J. Math. (2015). doi:10.1007/s00009-01560651-y

  4. Miller, J.B.: The natural ordering on strictly real Banach algebras. Math. Proc. Cumb. Phil. Soc. 539–556 (1989)

  5. Ptàk, V.: Banach algebras with involution. Manuscr. Math. 6, 245–290 (1972)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Nejjari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejjari, M.A. Some characterizations of hermitian Banach algebras. Rend. Circ. Mat. Palermo, II. Ser 66, 295–301 (2017). https://doi.org/10.1007/s12215-016-0253-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-016-0253-y

Keywords

Mathematics Subject Classification

Navigation