Advertisement

Weak supercyclicity: dynamics of paranormal operators

  • B. P. Duggal
Article
  • 104 Downloads

Abstract

If A is a Banach space operator with the single-valued extension property such that the isolated points of the spectrum of A are poles of (the resolvent of) A, then A is neither weakly hypercyclic nor n-supercyclic for any positive integer \(n\ge 1\). Furthermore, if also A and \(A^{-1}\) (whenever it exists) are normaloid, then A weakly supercyclic implies A is an invertible isometry. Translated to classes of Hilbert space operators, this implies that if an operator A is either paranormal or \(*\)-paranormal (or even M-hyponormal), then it is not weakly hypercyclic or n-supercyclic; furthermore, A weakly supercyclic implies A is a scalar multiple of a unitary operator [thereby answering a problem posed in Duggal et al. (J Math Anal Appl 427:107–113, 2015)].

Keywords

Banach space operator Weak hypercyclicity n-supercyclicity Weak supercyclicity SVEP Polaroid operator Totally hereditarily normaloid operator Paranormal operator 

Mathematics Subject Classification

Primary 47B20 47A16 

References

  1. 1.
    Aiena, P.: Fredholm and Local Spectral Theory with Applications to Multipliers. Kluwer, Dordrecht (2004)zbMATHGoogle Scholar
  2. 2.
    Aluthge, A., Wang, D.: An operator inequality which implies paranormality. Math. Inequal. Appl. 7, 113–119 (1999)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Apostol, C., Fialkow, L.A., Herrero, D.A., Voiculescu, D.: Approximation of Hilbert space operators. In: Research Notes in Mathematics 102, vol. II. Pitman Advanced Publishing Program, London (1984)Google Scholar
  4. 4.
    Burlando, L.: Continuity of spectrum and spectral radius in algebras of operators. Ann. des faculté des Sci. de Toulouse \(5^e\) série 1(9), 5–54 (1988)Google Scholar
  5. 5.
    Bayart, F., Matheron, E.: Hyponormal operators, weighted shifts and weak forms of supercyclicity. Proc. Edinb. Math. Soc. 49, 1–15 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bayart, F., Matheron, E.: Dynamics of linear operators. In: Cambridge Tracts in Mathematics, vol. 179. Cambridge University Press, Cambridge (2009)Google Scholar
  7. 7.
    Bourdon, P.S.: Orbits of hyponormal operators. Mich. Math. J. 44, 345–353 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bourdon, P.S., Feldman, N.S., Shapiro, J.H.: Some properties of \(N\)-supercyclic operators. Stud. Math. 165, 135–157 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Conway, J.B., Morrel, B.B.: Operators that are points of spectral continuity. Integral Equ. Oper. Theory 2, 174–198 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Duggal, B.P.: Riesz projections for a class of Hilbert space operators. Linear Algebra Appl. 407, 140–148 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Duggal, B.P.: Hereditarily normaloid operators. Extr. Math. 20, 203–217 (2005)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Duggal, B.P.: Polaroid operators, SVEP and perturbed Browder, Weyl theorems. Rend. Circ. Mat. Palermo LVI, 317–330 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Duggal, B.P.: Finite intertwining and subscalarity. Oper. Matrices 4, 257–271 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Duggal, B.P.: Asymptotic intertwining by the identity operator and permanence of spectral properties. Banach J. Math. Anal. 7, 186–195 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Duggal, B.P., Kubrusly, C.S.: PF property and property \((\beta )\) for paranormal operators. Rend. Circ. Mat. Palermo 63, 129–140 (2014). doi: 10.1007/s12215-014-0146-x MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Duggal, B.P., Kubrusly, C.S., Kim, I.H.: Bishop’s property \((\beta )\), a commutativity theorem and the dynamics of class \({{{\cal A}}}(s, t)\) operators. J. Math. Anal. Appl. 427, 107–113 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Eschmeier, J., Putinar, M.: Bishop’s condition \((\beta )\) and rich extensions of linear operators. Indiana Univ. Math. J. 37, 95–107 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Herrero, D.A.: Approximation of Hilbert space operators. In: Research Notes in Mathematics 72, vol. I. Pitman Advanced Publishing Program, London (1982)Google Scholar
  19. 19.
    Herrero, D.A.: Limits of hypercyclic and supercyclic operators. J. Funct. Anal. 99, 179–190 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Heuser, H.G.: Funct. Anal. Wiley, New York (1982)Google Scholar
  21. 21.
    Ito, M., Yamazaki, T.: Relations between inequalities \((B^{\frac{r}{2}}A^pB^{\frac{r}{2}})^{\frac{r}{p+r}}\) and \(A^p\ge (A^{\frac{p}{2}}B^rA^{\frac{p}{2}})^{\frac{p}{p+r}}\) and their applications. Integral Equ. Oper. Theory 44, 442–450 (2002)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kitai, C.: Invariant closed sets for linear operators. Ph.D. thesis, University of Toronto, Toronto (1982)Google Scholar
  23. 23.
    Kubrusly, C.S.: Spectral Theory of Operators on Hilbert Spaces. Birkhäuser, Boston (2012)CrossRefzbMATHGoogle Scholar
  24. 24.
    Laursen, K.B., Neumann, M.M.: Introduction to Local Spectral Theory. Clarendon Press, Oxford (2000)zbMATHGoogle Scholar
  25. 25.
    Peris, A.: Multi-hypercyclic operators are hypercyclic. Math. Z. 236, 779–786 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sanders, R.: Weakly supercyclic operators. J. Math. Anal. Appl. 292, 148–159 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2016

Authors and Affiliations

  1. 1.LondonUK

Personalised recommendations