Stability in delay nonlinear fractional differential equations

  • Hamid Boulares
  • Abdelouaheb Ardjouni
  • Yamina Laskri


In this paper, we give sufficient conditions to guarantee the asymptotic stability of the zero solution to a kind of delay nonlinear fractional differential equations of order \(\alpha \) \((1<\alpha <2\)). By using the Krasnoselskii’s fixed point theorem in a weighted Banach space, we establish new results on the asymptotic stability of the zero solution provided that \(g\left( t,0\right) =f\left( t,0,0\right) \), which include and improve some related results in the literature.


Delay fractional differential equations Fixed point theory Stability 

Mathematics Subject Classification

34K20 34K30 34K40 


  1. 1.
    Abbas, S.: Existence of solutions to fractional order ordinary and delay differential equations and applications. Electron. J. Differ. Equ. 2011(09), 1–11 (2011)MathSciNetGoogle Scholar
  2. 2.
    Agarwal, R.P., Zhou, Y., He, Y.: Existence of fractional functional differential equations. Computers Math. Appl. 59, 1095–1100 (2010)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Burton, T.A., Zhang, B.: Fractional equations and generalizations of Schaefer’s and Krasnoselskii’s fixed point theorems. Nonlinear Anal. 75, 6485–6495 (2012)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chen, F., Nieto, J.J., Zhou, Y.: Global attractivity for nonlinear fractional differential equations. Nonlinear Anal. Real Word Appl. 13, 287–298 (2012)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Ge, F., Kou, C.: Stability analysis by Krasnoselskii’s fixed point theorem for nonlinear fractional differential equations. Appl. Math. Comput. 257, 308–316 (2015)MathSciNetMATHGoogle Scholar
  6. 6.
    Ge, F., Kou, C.: Asymptotic stability of solutions of nonlinear fractional differential equations of order \(1 \le \alpha \le 2\). J. Shanghai Normal Univ. 44(3), 284–290Google Scholar
  7. 7.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATHGoogle Scholar
  8. 8.
    Kou, C., Zhou, H., Yan, Y.: Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis. Nonlinear Anal. 74, 5975–5986 (2011)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Li, Y., Chen, Y., Podlunby, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Li, Y., Chen, Y., Podlunby, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability. Comput. Math. Appl. 59, 1810–1821 (2010)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Li, C., Zhang, F.: A survey on the stability of fractional differential equations. Eur. Phys. J. Special Topics. 193, 27–47 (2011)CrossRefGoogle Scholar
  12. 12.
    Ndoye, I., Zasadzinski, M., Darouach, M., Radhy, N. E.: Observer based control for fractional-order continuous-time systems. In: Proceedings of the Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, WeBIn5.3, pp. 1932–1937, December 16–18 (2009)Google Scholar
  13. 13.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATHGoogle Scholar
  14. 14.
    Smart, D.R.: Fixed point theorems. Cambridge Uni. Press, Cambridge (1980)MATHGoogle Scholar
  15. 15.
    Wang, J., Zhou, Y., Fečkan, M.: Nonlinear impulsive problems for fractional differential equations and Ulam stability. Comput. Math. Appl. 64, 3389–3405 (2012)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2016

Authors and Affiliations

  • Hamid Boulares
    • 1
    • 2
  • Abdelouaheb Ardjouni
    • 3
    • 4
  • Yamina Laskri
    • 1
  1. 1.Department of Mathematics, Faculty of SciencesUniversity of AnnabaAnnabaAlgeria
  2. 2.Advanced Control Laboratory (LABCAV), Guelma UniversityGuelmaAlgeria
  3. 3.Department of Mathematics and Informatics, Faculty of Sciences and TechnologyUniv Souk AhrasSouk AhrasAlgeria
  4. 4.Applied Mathematics Lab, Faculty of Sciences, Department of MathematicsUniv AnnabaAnnabaAlgeria

Personalised recommendations