Stability for the class of uniformly starlike functions with respect to symmetric points



In this paper we investigate the problem of stability for the class of uniformly starlike functions with respect to symmetric points and we give the lower bounds of their radius of stability.


Stability of Hadamard product Convolution Uniformly starlike and convex functions Symmetric points 

Mathematics Subject Classification (2010)

Primary 30C45 Secondary 30C80 


  1. 1.
    Bednarz, U., Sokół, J.: On order of convolution consistence of the analytic functions. Studia Univ. Babeş-Bolyai Math. 3, 41–50 (2010)Google Scholar
  2. 2.
    Bednarz, U., Kanas, S.: Stability of the integral convolution of k-uniformly convex and k-starlike functions. J. Appl. Anal. 10(1), 105–115 (2004)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Gao, C., Zhou, S.: On a class of analytic functions related to the starlike functions. Kyungpook Math. J. 45, 123–130 (2005)MATHMathSciNetGoogle Scholar
  4. 4.
    Kanas, S.: Stability of convolution and dual sets for class of k-uniformly convex and \(k\)-starlike functions. Folia Sci. Univ. Tech. Resov. 22, 51–63 (1998)Google Scholar
  5. 5.
    Ma, W., Minda, D.: Uniformly convex functions. Ann. Polon. Math. 57, 165–175 (1992)MATHMathSciNetGoogle Scholar
  6. 6.
    Padmanabhan, K.S.: On uniformly convex functions in the unit disc. J. Anal. 2, 87–96 (1994)MATHMathSciNetGoogle Scholar
  7. 7.
    Parvatham, R., Premabi, M.: Neighbourhoods of uniformly starlike functions with respect to symmetric points. Bull. Cal. Math. Soc. 88, 155–16 (1996)MATHGoogle Scholar
  8. 8.
    Ram Reddy, T., Thirupathi Reddy, P.: Neighbourhood of a certain subclasses of \(SP(\beta )\). In: Procedings of the International Conference on Geometric Function Theory, Special Functions and Applications (ICGFT), vol. 15, pp. 239–245 (2007)Google Scholar
  9. 9.
    Rønning, F.: Uniformly convex functions and a corresponding class of starlike functions. Proc. Am. Math. Soc. 118, 189–196 (1993)Google Scholar
  10. 10.
    Rønning, F.: Integral representatios of bounded starlike functions. Ann. Polon. Ann. Polon. Math. 60, 289–297 (1995)Google Scholar
  11. 11.
    Ruscheweyh, S.T.: Duality for hadmarad product with applications to extremal problems. Trans. Am. 210, 63–74 (1975)Google Scholar
  12. 12.
    Ruscheweyh, S.T.: Neighbourhoods of univalent functions. Proc. Am. Math. Soc. 81, 521–527 (1981)Google Scholar
  13. 13.
    Ruscheweyh, S.T., Sheil-Small, T.: Hadamard products of schlicht functions and the Pólya-Schoenberg. Comment. Math. Helv. 48, 119–135 (1973)Google Scholar
  14. 14.
    Sakaguchi, K.: On a certain univalent functions. J. Math. Soc. Jpn. 11, 72–80 (1959)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Xu, Q.H., Wu, G.P.: Coefficient estimate for a subclass of univalent functions with respect to symmetric points. EJPAM 3(6), 1055–1061 (2010)Google Scholar

Copyright information

© Springer-Verlag Italia 2014

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceUrmia UniversityUrmiaIran

Personalised recommendations