Rendiconti del Circolo Matematico di Palermo

, Volume 62, Issue 3, pp 451–476 | Cite as

Computing modular Galois representations

  • Nicolas MascotEmail author


We compute modular Galois representations associated with a newform \(f\), and study the related problem of computing the coefficients of \(f\) modulo a small prime \(\ell \). To this end, we design a practical variant of the complex approximations method presented in Edixhoven and Couveignes (Ann. of Math. Stud., vol. 176, Princeton University Press, Princeton, 2011). Its efficiency stems from several new ingredients. For instance, we use fast exponentiation in the modular jacobian instead of analytic continuation, which greatly reduces the need to compute abelian integrals, since most of the computation handles divisors. Also, we introduce an efficient way to compute arithmetically well-behaved functions on jacobians, a method to expand cuspforms in quasi-linear time, and a trick making the computation of the image of a Frobenius element by a modular Galois representation more effective. We illustrate our method on the newforms \(\Delta \) and \(E_4 \cdot \Delta \), and manage to compute for the first time the associated faithful representations modulo \(\ell \) and the values modulo \(\ell \) of Ramanujan’s \(\tau \) function at huge primes for \(\ell \in \{ 11,13,17,19,29\}\). In particular, we get rid of the sign ambiguity stemming from the use of a projective representation as in Bosman (On the computation of Galois representations associated to level one modular forms., 2007). As a consequence, we can compute the values of \(\tau (p)~\mathrm{mod}~2^{11} \times 3^6 \times 5^3 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 691 \approx 2.8 \times 10^{19}\) for huge primes \(p\). The representations we computed lie in the jacobian of modular curves of genus up to \(22\).


Galois representations Modular forms Algorithms  Complex approximations Modular curves Jacobian varieties 

Mathematics Subject Classification (2010)

11F80 20C20 11F11 11F30 11G18 



I would like to heartily thank my advisor J.-M. Couveignes for offering me this beautiful subject to work on. More generally, I would like to thank people from the Bordeaux 1 university’s IMB for their support, with special thoughts to B. Allombert, K. Belabas, H. Cohen and A. Enge, as well as the PlaFRIM team. Finally, I thank B. Edixhoven for his remarks on earlier versions of this article, A. Page for helping me to make explicit the similarity classes in \(\mathrm{GL }_2({\mathbb {F}}_\ell )\), J. Klüners for his interest and assistance in formally proving that the polynomials I computed have the expected Galois group, and T. Selig for proofreading my English. This research was supported by the French ANR-12-BS01-0010-01 through the project PEACE, and by the DGA maîtrise de l’information. Experiments presented in this paper were carried out using the PlaFRIM experimental testbed, being developed under the Inria PlaFRIM development action with support from LABRI and IMB and other entities: Conseil Régional d’Aquitaine, FeDER, Université de Bordeaux and CNRS (see


  1. 1.
    Abramovich, D.: A linear lower bound on the gonality of modular curves. Int. Math. Res. Notices 20, 1005–1011 (1996)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Allgower, Eugene L.; Georg, Kurt, Introduction to numerical continuation methods. Reprint of the 1990 edition [Springer-Verlag, Berlin; MR1059455 (92a:65165)]. In: Classics in Applied Mathematics, vol. 45. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2003). xxvi+388 pp. ISBN:0-89871-544-XGoogle Scholar
  3. 3.
    Atkin, A.O.L., Winnie Li, W.-C.: Twists of newforms and pseudo-eigenvalues of W-operators. Invent. Math. 48(3), 221–243 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bosman, J.: On the computation of Galois representations associated to level one modular forms (2007).
  5. 5.
    Bosman, J.: A polynomial with Galois group \(SL_2({\mathbb{F}}_{16})\). LMS J. Comput. Math. 10, 1461–1570 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bosman, J.: Modular forms applied to the computational inverse Galois problem. (2011)
  7. 7.
    Bosman, J.: Computations with modular forms and Galois representations. Chapter 6 of Ref. [17] (2011)Google Scholar
  8. 8.
    Bosman, J.: Polynomials for projective representations of level one forms. Chapter 7 of Ref. [17] (2011)Google Scholar
  9. 9.
    Couveignes, J.-M., Edixhoven, B.: First description of the algorithms. Chapter 3 of Ref. [17] (2011)Google Scholar
  10. 10.
    Couveignes, J.-M.: Approximating \(V_f\) over the complex numbers. Chapter 12 of Ref. [17] (2011)Google Scholar
  11. 11.
    Couveignes, J.-M.: Computing \(V_f\) modulo \(p\). Chapter 13 of Ref. [17] (2011)Google Scholar
  12. 12.
    Cremona, J. E.: Algorithms for modular elliptic curves, 2nd edn. Cambridge University Press, Cambridge (1997). vi+376 pp. ISBN: 0-521-59820-6Google Scholar
  13. 13.
    Curtis, C.W., Reiner, I.: Representation theory of finite groups and associative algebras. Pure and Applied Mathematics, Vol. XI. Interscience Publishers, a division of John Wiley & sons, New York-London (1962). xiv+685 ppGoogle Scholar
  14. 14.
    Deligne, Pierre: Formes modulaires et représentations \(l\) -adiques. Lecture Notes Math. 179, 139–172 (1971)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dokchitser, T.V.: Identifying Frobenius elements in Galois groups. Algebra and Number Theory (2010, preprint, to appear)Google Scholar
  16. 16.
    Diamond, F., Shurman, J.: A first course in modular forms. Graduate Texts in Mathematics, 228. Springer, New York (2005). xvi+436 pp. ISBN: 0-387-23229-XGoogle Scholar
  17. 17.
    Edixhoven, B., Couveignes, J.-M.(eds.): Computational aspects of modular forms and Galois representations. Ann. of Math. Stud., vol. 176, Princeton University Press, Princeton (2011) (contributions by Bosman, J., Couveignes, J.-M., Edixhoven, B., de Jong, R. Merkl, F.)Google Scholar
  18. 18.
    Edixhoven, Bas: The weight in Serre’s conjectures on modular forms. Invent. Math. 109(3), 563–594 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Edixhoven, B.: Introduction, main results, context. Chapter 1 of Ref. [17] (2011)Google Scholar
  20. 20.
    Edixhoven, B.: Computing the residual Galois representations. Chapter 14 of Ref. [17] (2011)Google Scholar
  21. 21.
    Edixhoven, B, de Jong, R.: Bounds for Arakelov invariants of modular curves. Chapter 11 of Ref. [17] (2011)Google Scholar
  22. 22.
    von zur Gathen, J., Gerhard, J. Modern computer algebra. Cambridge University Press, New York (1999) xiv+753 pp. ISBN: 0-521-64176-4Google Scholar
  23. 23.
    Gross, Benedict H.: A tameness criterion for Galois representations associated to modular forms (mod \(p\) ). Duke Math. J. 61(2), 445–517 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers. Sixth edition. Revised by D. R. Heath-Brown and J. H. Silverman. With a foreword by Andrew Wiles. Oxford University Press, Oxford (2008). xxii+621 pp. ISBN: 978-0-19-921986-5Google Scholar
  25. 25.
    Hindry, M., Silverman, J.H.: Diophantine geometry—An introduction. Graduate Texts in Mathematics, vol. 201. Springer, New York (2000). xiv+558 pp. ISBN: 0-387-98975-7; 0-387-98981-1Google Scholar
  26. 26.
    Khare, C., Wintenberger, J.-P.: Serre’s modularity conjecture (I and II). Inventiones Mathematicae 178 (3), 485–504, 505–586 (2009)Google Scholar
  27. 27.
    Khuri-Makdisi, K.: Linear algebra algorithms for divisors on an algebraic curve. Math. Comp. 73(245), 333–357 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Khuri-Makdisi, K.: Asymptotically fast group operations on Jacobians of general curves. Math. Comp. 76(260), 2213–2239 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Lang, S.: Introduction to modular forms. With appendices by D. Zagier and Walter Feit. Corrected reprint of the 1976 original. Grundlehren der Mathematischen Wissenschaften, 222. Springer, Berlin (1995). x+261 pp. ISBN: 3-540-07833-9Google Scholar
  30. 30.
    Ribet, K.A.: On \(l\) -adic representations attached to modular forms II. Glasgow Math. J. 27, 185–194 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    SAGE mathematics software, version 5.3 (2012),
  32. 32.
    Schoof, R.: Counting points on elliptic curves over finite fields. Les Dix-huitièmes Journées Arithmétiques (Bordeaux, 1993). J. Théor. Nombres Bordeaux 7(1), 219–254 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Serre, J.-P.: Sur les représentations modulaires de degré \(2\) de Gal \(({\bar{\mathbb{Q}}}/{\mathbb{Q}})\). Duke Math. J. 54(1), 179–230 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Soprounov, I.: A short proof of the Prime Number Theorem for arithmetic progressions (2010, preprint).
  35. 35.
    Stein, W.: Modular forms, a computational approach. With an appendix by Paul E. Gunnells. Graduate Studies in Mathematics, vol. 79. American Mathematical Society, Providence (2007). xvi+268 pp. ISBN: 978-0-8218-3960-7; 0-8218-3960-8Google Scholar
  36. 36.
    Swinnerton-Dyer, H.P.F.: On \(\ell \) -adic representations and congruences for coefficients of modular forms. In: Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), Lecture Notes in Math., vol. 350, pp. 1–55. Springer, Berlin (1973)Google Scholar
  37. 37.
    Zeng, J.: On the computation of coefficients of modular forms: the \(p\)-adic approach. (2012)

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  1. 1.IMB, Université Bordeaux 1TalenceFrance
  2. 2.CNRS, IMB, UMR 5251TalenceFrance
  3. 3.INRIA, project LFANTTalenceFrance

Personalised recommendations