Advertisement

Rendiconti del Circolo Matematico di Palermo

, Volume 59, Issue 2, pp 185–197 | Cite as

Efficacy of cones on topological vector spaces and application to common fixed points of multifunctions

  • Shahram RezapourEmail author
  • Hassan Khandani
  • Seyyed M. Vaezpour
Article

Abstract

Let (E, τ) be a topological vector space and P a cone in E. We shall define a topology τ P on E so that (E, τ P ) is a normable topological vector space and P is a normal cone with normal constant M = 1. Then by using the norm, we shall give some results about common fixed points of two multifunctions on cone metric spaces.

Keywords

Common fixed point Multifunction Non-normal cone Topological vector space 

Mathematics Subject Classification (2000)

47H10 54H25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abass, M., Jungck, G.: Common fixed point result for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., 341 (2008), 416–420CrossRefMathSciNetGoogle Scholar
  2. 2.
    Azam, A., Arshad, M., Beg, I.: Common fixed points of two maps in cone metric spaces, Rend. Circ. Mat. Palermo, 57 (2008), 433–441zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Di Bari, C., Vetro, P.: φ-pairs and common fixed points in conemetric spaces, Rend. Circ. Mat. Palermo, 57 (2008), 279–285zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Di Bari, C., Vetro, P.: Weakly φ-pairs and common fixed points in cone metric spaces, Rend. Circ. Mat. Palermo, 58 (2009), 125–132zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Huang, L.G., Zhang, X.: Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ilić, D., Rakočević, V.: Common fixed points result for maps on cone metric spaces, J. Math. Anal. Appl., 341 (2008), 867–882Google Scholar
  7. 7.
    Mohebi, H., Sadeghi, H., Rubinov, A.M.: Best approximation in a class of normed spaces with star-shaped cones, Numer. Funct. Anal. Optim., 27 (2006), no. 3–4, 411–436zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Mohebi, H.: Downward sets and their best simultaneous approximation properties with applications, Numer. Funct. Anal. Optim., 25 (2004), no. 7–8, 685–705zbMATHMathSciNetGoogle Scholar
  9. 9.
    Rezapour, Sh., Hamlbarani, R.: Some notes on the paper “Cone metric spaces and fixed point theorems of contractive mappings”, J. Math. Anal. Appl., 345 (2008), 719–724zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Rezapour, Sh., Derafshpour, M., Hamlbarani, R.: A review on topological properties of cone metric spaces, Submitted.Google Scholar
  11. 11.
    Rudin, W.: Functional Analysis. McGraw-Hill, Second edition (1991)Google Scholar
  12. 12.
    Vetro, P.: Common fixed points in cone metric spaces, Rend. Circ. Mat. Palermo, 56 (2007), 464–468zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Wardowski, D.: Endpoints and fixed points of set-valued contractions in cone metric spaces, Nonlinear Anal., 71 (2009), 512–516zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Italia 2010

Authors and Affiliations

  • Shahram Rezapour
    • 1
    Email author
  • Hassan Khandani
    • 2
  • Seyyed M. Vaezpour
    • 3
  1. 1.Department of MathematicsAzarbaidjan University of Tarbiat MoallemTabrizIran
  2. 2.Department of MathematicsAazad Islamic University, Science and Research BranchTehranIran
  3. 3.Department of MathematicsAmirkabir University of TechnologyTehranIran

Personalised recommendations