Skip to main content
Log in

A generalized Kantorovich theorem for nonlinear equations based on function splitting

  • Published:
Rendiconti del Circolo Matematico di Palermo Aims and scope Submit manuscript

Abstract

The Kantorovich theorem is a fundamental tool in nonlinear analysis for proving the existence and uniqueness of solutions of nonlinear equations arising in various fields. In the present paper we formulate and prove a generalized Kantorovich theorem that contains as special cases the Kantorovich theorem and a weak Kantorovich theorem recently proved by Uko and Argyros. An illustrative example is given to show that the new theorem is applicable in some situations in which the other two theorems are not applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Argyros, I.K.: On the Newton-Kantorovich hypothesis for solving equations, J. Comput. Appl. Math., 11 (2004), 103–110

    MATH  Google Scholar 

  2. Dennis, J.E.: On the Kantorovich hypotheses for Newton’s method, SIAMJ. Numer. Anal., 6 (1969), 493–507

    Article  MATH  MathSciNet  Google Scholar 

  3. Deuflhard, P.: Newton methods for nonlinear problems. (Springer Series in Computational Mathematics 35) Berlin: Springer-Verlag (2004)

    MATH  Google Scholar 

  4. Gragg, W.B., Tapia, R.A.: Optimal error bounds for the Newton-Kantorovich theorem, SIAM J. Numer. Anal., 11 (1974), 10–13

    Article  MATH  MathSciNet  Google Scholar 

  5. Kantorovich, L.V.: On Newton’s method for functional equations (Russian), Dokl. Akad. Nauk. SSSR, 59 (1948), 1237–1240

    Google Scholar 

  6. Ortega, L.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. New York: Academic Press (1970)

    MATH  Google Scholar 

  7. Ostrowski, A.M.: Solution of Equations in Euclidean and Banach Spaces. New York: Academic Press (1973)

    MATH  Google Scholar 

  8. Potra, F.-A.: On the a posteriorierror estimates for Newton’smethod, Beiträge ZurNumer. Math., 12 (1984), 125–138

    MathSciNet  Google Scholar 

  9. Potra, F.-A., Pták, V.: Sharp error bounds for Newton’s process, Numer.Math., 34 (1980), 63–72

    Article  MATH  MathSciNet  Google Scholar 

  10. Uko, L.U., Adeyeye, J.O.: Generalized Newton Iterative methods for Nonlinear Operator Equations, Nonlinear Studies, 8 (2001), 465–477

    MATH  MathSciNet  Google Scholar 

  11. Uko, L.U., Argyros, I.K.: A weak Kantorovich existence theorem for the solution of nonlinear equations, J. Math. Anal. Appl., 342 (2008), 909–914

    Article  MATH  MathSciNet  Google Scholar 

  12. Yamamoto, T.: Error bounds for Newton’s process derived from the Kantorovich conditions, Japan J. Appl. Math., 2 (1985), 285–292

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis K. Argyros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uko, L.U., Argyros, I.K. A generalized Kantorovich theorem for nonlinear equations based on function splitting. Rend. Circ. Mat. Palermo 58, 441–451 (2009). https://doi.org/10.1007/s12215-009-0034-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-009-0034-y

Keywords

Mathematics Subject Classification (2000)

Navigation