Skip to main content
Log in

On the finiteness of a field-theoretic invariant for commutative rings

  • Published:
Rendiconti del Circolo Matematico di Palermo Aims and scope Submit manuscript

Abstract

If T is a (commutative unital) ring extension of a ring R, then Λ(T /R) is defined to be the supremum of the lengths of chains of intermediate fields between R P /P R P and T Q /QT Q , where Q varies over Spec(T) and P:= QR. The invariant σ(R):= sup Λ(T/R), where T varies over all the overrings of R. It is proved that if Λ(S/R)< ∞ for all rings S between R and T, then (R, T) is an INC-pair; and that if (R, T) is an INC-pair such that T is a finite-type R-algebra, then Λ(T/R)< ∞. Consequently, if R is a domain with σ(R) < ∞, then the integral closure of R is a Prüfer domain; and if R is a Noetherian G-domain, then σ(R) < ∞, with examples showing that σ(R) can be any given non-negative integer. Other examples include that of a onedimensional Noetherian locally pseudo-valuation domain R with σ(R)=∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ayache, A., Jaballah, A.: Residually algebraic pairs of rings, Math. Z., 225 (1997), 49–65

    Article  MATH  MathSciNet  Google Scholar 

  2. Dobbs, D. E.: On INC-extensions and polynomials with unit content, Canad. Math. Bull., 23 (1980), 37–42

    MATH  MathSciNet  Google Scholar 

  3. Dobbs, D. E.: A field-theoretic invariant for domains, Rend. Circ. Mat. Palermo, Ser. II, 54 (2005), 396–408

    Article  MATH  MathSciNet  Google Scholar 

  4. Dobbs, D. E., Chatham, R. D.: On open ring pairs of commutative rings, Houston J. Math., 31 (2005), 65–74

    MATH  MathSciNet  Google Scholar 

  5. Dobbs, D. E., Fontana, M.: Locally pseudo-valuation domains, Ann. Mat. Pura Appl., 134 (1983), 147–168

    Article  MATH  MathSciNet  Google Scholar 

  6. Dobbs, D. E., Fontana, M., Papick, I. J.: Direct limits and going-down, Comm. Math. Univ. St. Pauli, 31 (1982), 129–135

    MATH  MathSciNet  Google Scholar 

  7. Dobbs, D. E., Mullins, B.: On the lengths of maximal chains of intermediate fields in a field extension, Comm. Algebra, 29 (2001), 4487–4507

    Article  MATH  MathSciNet  Google Scholar 

  8. Dobbs, D. E., Mullins, B.: On a field-theoretic invariant of commutative rings, Comm. Algebra, 32 (2004), 1295–1305

    Article  MATH  MathSciNet  Google Scholar 

  9. Gilmer, R.: Multiplicative Ideal Theory. New York: Dekker (1972)

    MATH  Google Scholar 

  10. Grothendieck, A., Dieudonné, J.: Eléments de géométrie algébrique, I. Berlin: Springer-Verlag (1971)

    MATH  Google Scholar 

  11. Hedstrom, J. R., Houston, E. G.: Pseudo-valuation domains, Pac. J. Math., 75 (1978), 137–147

    MATH  MathSciNet  Google Scholar 

  12. Kaplansky, I.: Commutative Rings, rev. ed.. Chicago: Univ. Chicago Press (1974)

    MATH  Google Scholar 

  13. Maroscia, P.: Topological properties of some classes of G-domains, Boll. U. M. I., (5) 15-A (1978), 688–698

    MathSciNet  Google Scholar 

  14. Maroscia, P.: Some results on G-domains, Boll. U. M. I., (5) 17-B (1980), 1166–1177

    MathSciNet  Google Scholar 

  15. Nagata, M.: Local Rings. New York: Wiley-Interscience (1962)

    MATH  Google Scholar 

  16. Papick, I. J.: Topologically defined classes of going-down domains, Trans. Amer. Math. Soc., 219 (1976), 1–37

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Dobbs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobbs, D.E. On the finiteness of a field-theoretic invariant for commutative rings. Rend. Circ. Mat. Palermo 58, 327–336 (2009). https://doi.org/10.1007/s12215-009-0027-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-009-0027-x

Keywords

Mathematics Subject Classification (2000)

Navigation