Skip to main content

Magnetic microbot-based micromanipulation of surrogate biological objects in fluidic channels

Abstract

We report automated nonprehensile magnetic micromanipulation of surrogate biological objects in the presence of a fluid flow. We utilise ferromagnetic microparticles (in the size range of 200 - 350 μm) as microbots and silica beads (having size range of 150 - 350 μm) as surrogate biological objects. The microbot is actuated using magnetic field generated by a set of electromagnetic coils placed in a quadrupole configuration and manipulated using a proportional controller developed for the purpose. We deploy a feedback-based manoeuvre planner that invokes one of the five motion manoeuvres, namely, Arrest, Approach, Align, Push, and Home, based on the instantaneous locations of the microbot, target object, and goal location, for automated nonprehensile manipulation of the target objects. Using this protocol we demonstrate the sorting of surrogate biological objects in a bifurcated fluidic channel. The developed system can be utilised to study the useful properties of large microscopic biological objects in an ambient fluid-flow environment. The demonstrated synergy between microrobotics and microfluidics has tremendous scope for applications in key areas including soft-matter science, cell biology and cancer research.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data availability

Not applicable

References

  1. Kumar A, Rivera RGH, Graham MD (2014) Flow-induced segregation in confined multicomponent suspensions: effects of particle size and rigidity. Journal of Fluid Mechanics 738:423–462

    Google Scholar 

  2. Kumar A, Graham MD (2011) Segregation by membrane rigidity in flowing binary suspensions of elastic capsules. Physical Review E 84(6):066,316

    Google Scholar 

  3. Rivera RGH, Sinha K, Graham MD (2015) Margination regimes and drainage transition in confined multicomponent suspensions. Phys Rev Lett 114(18):188,101

    Google Scholar 

  4. Sinha K, Graham MD (2016) Shape-mediated margination and demargination in flowing multicomponent suspensions of deformable capsules. Soft Matter 12(6):1683–1700

    Google Scholar 

  5. Graham MD (2019) Blood as a suspension of deformable particles. In: Dynamics of blood cell suspensions in microflows. CRC Press, pp 77–99

  6. Kumar A, Graham MD (2012) Mechanism of margination in confined flows of blood and other multicomponent suspensions. Phys Rev Lett 109(10):108,102

    Google Scholar 

  7. Zhao H, Shaqfeh ES, Narsimhan V (2012) Shear-induced particle migration and margination in a cellular suspension. Phys Fluids 24(1):011,902

    Google Scholar 

  8. Qi QM, Shaqfeh ES (2018) Time-dependent particle migration and margination in the pressure-driven channel flow of blood. Physical Review Fluids 3(3):034,302

    Google Scholar 

  9. Qi QM, Shaqfeh ES (2017) Theory to predict particle migration and margination in the pressure-driven channel flow of blood. Physical Review Fluids 2(9):093,102

    Google Scholar 

  10. Thakur A, Chowdhury S, Švec P et al (2014) Indirect pushing based automated micromanipulation of biological cells using optical tweezers. The International Journal of Robotics Research 33(8):1098–1111

    Google Scholar 

  11. Karabacak NM, Spuhler PS, Fachin F et al (2014) Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nature Protocols 9(3):694–710

    Google Scholar 

  12. Huang NT, Hwong YJ, Lai RL (2018) A microfluidic microwell device for immunomagnetic single-cell trapping. Microfluid Nanofluid 22(2):1–8

    Google Scholar 

  13. Bolopion A, Xie H, Haliyo DS et al (2010) Haptic teleoperation for 3-d microassembly of spherical objects. IEEE/ASME Transactions on Mechatronics 17(1):116–127

    Google Scholar 

  14. Kummer MP, Abbott JJ, Kratochvil BE et al (2010) Octomag: an electromagnetic system for 5-dof wireless micromanipulation. IEEE Trans Robot 26(6):1006–1017

    Google Scholar 

  15. Li H, Go G, Ko SY et al (2016) Magnetic actuated ph-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Materials and Structures 25(2):027,001

    Google Scholar 

  16. Tan Y, Sun D, Wang J et al (2010) Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers. IEEE Transactions on Biomedical Engineering 57(7):1816–1825

    Google Scholar 

  17. Mrinalini RSM, Jayanth G (2016) A system for replacement and reuse of tips in atomic force microscopy. IEEE/ASME Transactions on Mechatronics 21(4):1943–1953

    Google Scholar 

  18. Zhang XP, Leung C, Lu Z et al (2012) Controlled aspiration and positioning of biological cells in a micropipette. IEEE Trans Biomed Eng 59(4):1032–1040

    Google Scholar 

  19. Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8:425–454

    Google Scholar 

  20. Tanyeri M, Schroeder CM (2013) Manipulation and confinement of single particles using fluid flow. Nano Lett 13(6):2357–2364

    Google Scholar 

  21. Pereira H, Schulze PS, Schüler LM et al (2018) Fluorescence activated cell-sorting principles and applications in microalgal biotechnology. Algal Research 30:113–120

    Google Scholar 

  22. (2022) Fluorescence Activated Cell Sorting: What Is FACS and FACS analysis? https://www.akadeum.com/technology/facs-fluorescence-activated-cell-sorting/, accessed May 1, 2022

  23. Schmid I, Lambert C, Ambrozak D et al (2007) International society for analytical cytology biosafety standard for sorting of unfixed cells. Cytometry Part A: The Journal of the International Society for Analytical Cytology 71(6):414–437

    Google Scholar 

  24. Holmes KL, Fontes B, Hogarth P et al (2014) International society for the advancement of cytometry cell sorter biosafety standards. Cytometry Part A 85(5):434–453

    Google Scholar 

  25. Ma Z, Zhou Y, Collins DJ et al (2017) Fluorescence activated cell sorting via a focused traveling surface acoustic beam. Lab Chip 17(18):3176–3185

    Google Scholar 

  26. Song H, Rosano JM, Wang Y et al (2015) Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis. Lab Chip 15(5):1320–1328

    Google Scholar 

  27. Hoshino K, Huang YY, Lane N et al (2011) Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip 11(20):3449–3457

    Google Scholar 

  28. Cheong F, Sow C, Wee A et al (2006) Optical travelator: transport and dynamic sorting of colloidal microspheres with an asymmetrical line optical tweezers. Applied Physics B 83(1):121–125

    Google Scholar 

  29. Zhang H, Liu KK (2008) Optical tweezers for single cells. Journal of the Royal Society interface 5(24):671–690

    Google Scholar 

  30. Wang X, Chen S, Kong M et al (2011) Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip 11(21):3656–3662

    Google Scholar 

  31. Nawaz AA, Urbanska M, Herbig M et al (2020) Intelligent image-based deformation-assisted cell sorting with molecular specificity. Nat Methods 17(6):595–599

    Google Scholar 

  32. Li Y, Mahjoubfar A, Chen CL et al (2019) Deep cytometry: deep learning with real-time inference in cell sorting and flow cytometry. Scientific Reports 9(1):1–12

    Google Scholar 

  33. Nitta N, Sugimura T, Isozaki A et al (2018) Intelligent image-activated cell sorting. Cell 175(1):266–276

    Google Scholar 

  34. Gu Y, Zhang AC, Han Y et al (2019) Machine learning based real-time image-guided cell sorting and classification. Cytometry Part A 95(5):499–509

    Google Scholar 

  35. Chen J, Niu N, Zhang J et al (2019) Polyploid giant cancer cells (pgccs): the evil roots of cancer. Curr Cancer Drug Targets 19(5):360–367

    Google Scholar 

  36. Lin KC, Torga G, Sturm J et al (2018) The emergence of polyploid giant cancer cells as the reservoir of theraputic resistance. In: APS march meeting abstracts, pp V46–003

  37. Cui X, Hartanto Y, Zhang H (2017) Advances in multicellular spheroids formation. Journal of the Royal Society Interface 14(127):20160,877

    Google Scholar 

  38. Nunes AS, Barros AS, Costa EC et al (2019) 3d tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnol Bioeng 116(1):206–226

    Google Scholar 

  39. Liu WJ, Ye L, Huang WF et al (2016) p62 links the autophagy pathway and the ubiqutin–proteasome system upon ubiquitinated protein degradation. Cellular & Molecular Biology Letters 21(1):1–14

    Google Scholar 

  40. Cloer E, Siesser P, Cousins E et al (2018) p62-dependent phase separation of patient-derived keap1 mutations and nrf2. Mol Cell Biol 38(22):e00,644–17

    Google Scholar 

  41. Steager EB, Selman Sakar M, Magee C et al (2013) Automated biomanipulation of single cells using magnetic microrobots. The International Journal of Robotics Research 32(3):346–359

    Google Scholar 

  42. Ongaro F, Scheggi S, Yoon C et al (2017) Autonomous planning and control of soft untethered grippers in unstructured environments. Journal of Micro-Bio Robotics 12(1-4):45–52

    Google Scholar 

  43. Gultepe E, Randhawa JS, Kadam S et al (2013) Biopsy with thermally-responsive untethered microtools. Advanced Materials 25(4):514–519

    Google Scholar 

  44. Diller E, Sitti M (2014) Three-dimensional programmable assembly by untethered magnetic robotic micro-grippers. Adv Funct Mater 24(28):4397–4404

    Google Scholar 

  45. Agarwal D, Thakur AD, Thakur A (2022) A feedback-based manoeuvre planner for nonprehensile magnetic micromanipulation of large microscopic biological objects. Robotics and Autonomous Systems 148:103,941

    Google Scholar 

  46. Abou Seif M, Hassan A, El-Shaer AH et al (2017) A magnetic bilateral tele-manipulation system using paramagnetic microparticles for micromanipulation of nonmagnetic objects. In: 2017 IEEE international conference on advanced intelligent mechatronics (AIM). IEEE, pp 1095–1102

  47. Mathieu JB, Beaudoin G, Martel S (2006) Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an mri system. IEEE Trans Biomed Eng 53(2):292–299

    Google Scholar 

  48. Erni S, Schürle S, Fakhraee A et al (2013) Comparison, optimization, and limitations of magnetic manipulation systems. Journal of Micro-Bio Robotics 8(3-4):107–120

    Google Scholar 

  49. Wei CW, Xia J, Pelivanov IM et al (2012) Trapping and dynamic manipulation of polystyrene beads mimicking circulating tumor cells using targeted magnetic/photoacoustic contrast agents. Journal of Biomedical Optics 17(10):101,517

    Google Scholar 

  50. Herzenberg LA, Bianchi DW, Schröder J et al (1979) Fetal cells in the blood of pregnant women: detection and enrichment by fluorescence-activated cell sorting. Proceedings of the National Academy of Sciences 76(3):1453–1455

    Google Scholar 

  51. Sharon Y, Alon L, Glanz S et al (2013) Isolation of normal and cancer-associated fibroblasts from fresh tissues by fluorescence activated cell sorting (facs). JoVE (Journal of Visualized Experiments) (71):e4425

  52. Geens M, Van de Velde H, De Block G et al (2007) The efficiency of magnetic-activated cell sorting and fluorescence-activated cell sorting in the decontamination of testicular cell suspensions in cancer patients. Hum Reprod 22(3):733–742

    Google Scholar 

  53. Carter AD, Bonyadi R, Gifford ML (2013) The use of fluorescence-activated cell sorting in studying plant development and environmental responses. International Journal of Developmental Biology 57 (6-7-8):545–552

    Google Scholar 

  54. Kovac J, Voldman J (2007) Intuitive, image-based cell sorting using optofluidic cell sorting. Anal Chem 79(24):9321–9330

    Google Scholar 

  55. Chowdhury S, Švec P, Wang C et al (2013) Automated cell transport in optical tweezers-assisted microfluidic chambers. IEEE Trans Autom Sci Eng 10(4):980–989

    Google Scholar 

  56. Ma B, Yao B, Peng F et al (2012) Optical sorting of particles by dual-channel line optical tweezers. Journal of Optics 14(10):105,702

    Google Scholar 

  57. Mizuno M, Yamada M, Mitamura R et al (2013) Magnetophoresis-integrated hydrodynamic filtration system for size-and surface marker-based two-dimensional cell sorting. Anal Chem 85(16):7666–7673

    Google Scholar 

  58. Yamanishi Y, Sakuma S, Onda K et al (2008) Biocompatible polymeric magnetically driven microtool for particle sorting. Journal of Micro-Nano Mechatronics 4(1):49–57

    Google Scholar 

  59. Shen Y, Yalikun Y, Tanaka Y (2019) Recent advances in microfluidic cell sorting systems. Sensors and Actuators B: Chemical 282:268–281

    Google Scholar 

  60. Dalili A, Samiei E, Hoorfar M (2019) A review of sorting, separation and isolation of cells and microbeads for biomedical applications: Microfluidic approaches. Analyst 144(1):87–113

    Google Scholar 

  61. Patsch K, Chiu CL, Engeln M et al (2016) Single cell dynamic phenotyping. Scientific Reports 6(1):1–15

    Google Scholar 

  62. Agarwal D, Thakur AD, Thakur A (2019) A robotic tool for magnetic micromanipulation of cells in the presence of an ambient fluid flow. In: International design engineering technical conferences and computers and information in engineering conference, american society of mechanical engineers, pp V004T08A017

  63. Ma W, Niu F, Li X et al (2013) Automated manipulation of magnetic micro beads with electromagnetic coil system. In: The 7th IEEE international conference on nano/molecular medicine and engineering, IEEE, pp 47–50

  64. Yesin KB, Vollmers K, Nelson BJ (2006) Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. The International Journal of Robotics Research 25 (5-6):527–536

    Google Scholar 

  65. Chung YC, Chen PW, Fu CM et al (2013) Particles sorting in micro-channel system utilizing magnetic tweezers and optical tweezers. J Magn Magn Mater 333:87–92

    Google Scholar 

  66. Qi X, Carberry DM, Cai C et al (2017) Optical sorting and cultivation of denitrifying anaerobic methane oxidation archaea. Biomedical Opt Express 8(2):934–942

    Google Scholar 

  67. El-Gazzar AG, Al-Khouly LE, Klingner A et al (2015) Non-contact manipulation of microbeads via pushing and pulling using magnetically controlled clusters of paramagnetic microparticles. In: 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 778–783

  68. Khalil IS, van den Brink F, Sukas OS et al (2013) Microassembly using a cluster of paramagnetic microparticles. In: 2013 IEEE international conference on robotics and Automation, IEEE, pp 5527–5532

  69. Khalil IS, Magdanz V, Sanchez S et al (2014) Wireless magnetic-based closed-loop control of self-propelled microjets. PloS One 9(2):e83,053

    Google Scholar 

  70. Sun W, Khalil IS, Misra S et al (2014) Motion planning for paramagnetic microparticles under motion and sensing uncertainty. In: 2014 IEEE international conference on robotics and automation (ICRA). IEEE, pp 5811–5817

  71. Li Y, Qiang S, Zhuang X et al (2004) Robust and adaptive backstepping control for nonlinear systems using rbf neural networks. IEEE Transactions on Neural Networks 15(3):693–701

    Google Scholar 

  72. Rigatos G, Siano P, Wira P et al (2015) Nonlinear h-infinity feedback control for asynchronous motors of electric trains. Intelligent Industrial Systems 1(2):85–98

    Google Scholar 

  73. Chowdhury S, Johnson BV, Jing W et al (2017) Designing local magnetic fields and path planning for independent actuation of multiple mobile microrobots. Journal of Micro-Bio Robotics 12(1):21–31

    Google Scholar 

  74. Li P, Mao Z, Peng Z et al (2015) Acoustic separation of circulating tumor cells. Proceedings of the National Academy of Sciences 112(16):4970–4975

    Google Scholar 

  75. Thakur A (2021) Trajectory planning in the presence of dynamic obstacles for anguilliform-inspired robots. In: Advances in robotics-5th international conference of the robotics society, pp 1–7

  76. Raj A, Thakur A (2019) Dynamically feasible trajectory planning for anguilliform-inspired robots in the presence of steady ambient flow. Robot Auton Syst 118:144–158

    Google Scholar 

  77. Gyak KW, Jeon S, Ha L et al (2019) Magnetically actuated sicn-based ceramic microrobot for guided cell delivery. Advanced Healthcare Materials 8(21):1900,739

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Thakur.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Supplementary information

Appendix: Supplementary information

Table 2 Index to online resources

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Agarwal, D., Thakur, A.D. & Thakur, A. Magnetic microbot-based micromanipulation of surrogate biological objects in fluidic channels. J Micro-Bio Robot (2022). https://doi.org/10.1007/s12213-022-00151-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12213-022-00151-4

Keywords

  • Flow manipulation
  • Nonprehensile manipulation
  • Magnetic manipulation
  • Selective manipulation
  • Micromanipulation
  • Feedback planner