Dutse SW, Yusof NA (2011) Microfluidics-based lab-on-chip systems in DNA-based biosensing: an overview. Sensors 11(6):5754–5768
Article
Google Scholar
Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26(11):1261–1268
Article
Google Scholar
Marle L, Greenway GM (2005) Microfluidic devices for environmental monitoring. TrAC Trends Anal Chem 24(9):795–802
Article
Google Scholar
Verpoorte E, De Rooij NF (2003) Microfluidics meets MEMS. Proc IEEE 91(6):930–953
Article
Google Scholar
Capretto L, Cheng W, Hill M, Zhang X (2011) Micromixing within microfluidic devices. Microfluidics:27–68
Sánchez-Ferrer A, Fischl T, Stubenrauch M, Albrecht A, Wurmus H, Hoffmann M, Finkelmann H (2011) Liquid-crystalline elastomer microvalve for microfluidics. Adv Mater 23(39):4526–4530
Article
Google Scholar
Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14(6):R35
Article
Google Scholar
Rasmussen A, Mavriplis C, Zaghloul ME, Mikulchenko O, Mayaram K (2001) Simulation and optimization of a microfluidic flow sensor. Sensors Actuators A Phys 88(2):121–132
Article
Google Scholar
Feng GH, Kim ES (2004) Micropump based on PZT unimorph and one-way parylene valves. J Micromech Microeng 14(4):429
Article
Google Scholar
----Bourouina, T., Bossebuf, A., & Grandchamp, J. P. (1997). Design and simulation of an electrostatic micropump for drug-delivery applications. J Micromech Microeng, 7(3), 186
Yamahata C, Lotto C, Al-Assaf E, Gijs MAM (2005) A PMMA valveless micropump using electromagnetic actuation. Microfluid Nanofluid 1(3):197–207
Article
Google Scholar
Chee PS, Minjal MN, Leow PL, Ali MSM (2015) Wireless powered thermo-pneumatic micropump using frequency-controlled heater. Sensors Actuators A Phys 233:1–8
Article
Google Scholar
Merzouki T, Duval A, Zineb TB (2012) Finite element analysis of a shape memory alloy actuator for a micropump. Simul Model Pract Theory 27:112–126
Article
Google Scholar
Chen CH, Santiago JG (2002) A planar electro osmotic micropump. J Microelectromech Syst 11(6):672–683
Article
Google Scholar
Xu TB, Su J (2005) Development, characterization, and theoretical evaluation of electroactive polymer-based micropump diaphragm. Sensors Actuators A Phys 121(1):267–274
Article
Google Scholar
Effenhauser CS, Harttig H, Krämer P (2002) An evaporation-based disposable micropump concept for continuous monitoring applications. Biomed Microdevices 4(1):27–32
Article
Google Scholar
Colgate ED, Matsumoto H (1990) An investigation of electrowetting based microactuation. J Vac Sci Technol A 8(4):3625–3633
Article
Google Scholar
Uvarov, I. V., Lemekhov, S. S., Melenev, A. E., Naumov, V. V., Koroleva, O. M., Izyumov, M. O., & Svetovoy, V. B. (2016, August). A simple electrochemical micropump: design and fabrication. In journal of physics: conference series (Vol. 741, no. 1, p. 012167). IOP publishing
Geng X, Yuan H, Oguz HN, Prosperetti A (2001) Bubble-based micropump for electrically conducting liquids. J Micromech Microeng 11(3):270
Article
Google Scholar
Darabi J, Ohadi MM, DeVoe D (2001) An electrohydrodynamic polarization micropump for electronic cooling. J Microelectromech Syst 10(1):98–106
Article
Google Scholar
Zdeblick, M.J., Angell, J.B., A microminiature electric-to-fluidic valve. The 4thInternational Conference Solid State Sensors and Actuators (Transducer ‘87), Tokyo,827–829, 1987
Smits JG (1990) Piezoelectric micropump with three valves working peristaltically. Sensors Actuators A Phys 21(1–3):203–206
Article
Google Scholar
Wang B, Chu X, Li E, Li L (2006) Simulations and analysis of a piezoelectric micropump. Ultrasonics 44:e643–e646
Article
Google Scholar
Cui Q, Liu C, Zha XF (2007) Study on a piezoelectric micropump for thecontrolled drug delivery system. Microfluid Nanofluidics 3(4):377–390
Article
Google Scholar
Wang XY, Ma YT, Yan GY, Feng ZH (2014) A compact and high flow-ratepiezoelectric micropump with a folded vibrator. Smart Mater Struct 23(11):1–11
Google Scholar
Singh S, Kumar N, George D, Sen AK (2015) Analytical modeling, simulationsand experimental studies of a PZT actuated planar valveless PDMS micropump. Sensors Actuators A Phys 225:81–94
Article
Google Scholar
Rao KS, Ganesh GV, Lakshmi GS, Gopichand C, Sravani KG (2021) Analysis of PDMS based MEMS device for drug delivery systems. Microsyst Technol 27(3):659–664
Article
Google Scholar
Rao KS, Ganesh GV, Lakshmi GS, Gopichand C, Sravani KG (2021) Analysis of PDMS based MEMS device for drug delivery systems. Microsyst Technol 27(3):659–664
Article
Google Scholar
Rao, K. S., Sateesh, J., Guha, K., Baishnab, K. L., Ashok, P., \& Sravani, K. G. (2018). Design and analysis of MEMS based piezoelectric micro pump integrated with micro needle. Microsystem Technologies, 1–7
Sateesh J, Sravani KG, Kumar RA, Guha K, Rao KS (2018) Design and flow analysis of MEMS based piezo-electric micro pump. Microsyst Technol 24(3):1609–1614
Article
Google Scholar
Rao, K. S., Hamza, M., Kumar, P. A., \& Sravani, K. G. (2019). Design and optimization of MEMS based piezoelectric actuator for drug delivery systems. Microsystem Technologies, 1–9
Revathi S, Padmanabhan R (2018) Design and development of PiezoelectricComposite-BasedMicropump. J Microelectromech Syst 27(6):1105–1113
Article
Google Scholar
Dong S, Uchino K, Li L, Viehland D (2007) Analytical solutions for thetransverse deflection of a piezoelectric circular axisymmetric unimorph actuator. IEEE Trans Ultrason Ferroelectr Freq Control 54(6):1240–1249
Article
Google Scholar
Nguyen, T.T., Pham, M., Goo, N.S., Development of a peristaltic micropumpfor bio-medical applications based on mini LIPCA. J. BionicEng.,5(2),135–141, 2008
Chao C-S, Huang P-C, Chen M-K, Jang L-S (2011) Design and analysis of charge-recovery driving circuits for portable peristaltic micropumps with piezoelectric actuators. Sensors Actuators A Phys 168(2):313–319
Article
Google Scholar
Stemme E, Stemme G (1993) A valveless diffuser/nozzle-based fluid pump. Sensors Actuators A Phys 39(2):159–167
Article
Google Scholar
Forster FK, Bardell RL, Afromowitz MA, Sharma NR, Blanchard A (1995) Design, fabrication and testing of fixed-valve micro-pumps. ASMEPUBLICATIONS-FED 234:39–44
Google Scholar
Cui, Q., Liu, C., Zha, X.F., Simulation and optimization of a piezoelectricmicropump for medical applications. Int J Adv Manuf Technol, 36(5–6), 516–524,2008
Dong S, Bouchilloux P, Du XH, Uchino K (2001) Ring type uni/bimorph piezoelectric actuators. J Intell Mater Syst Struct 12(9):613–616
Article
Google Scholar
H.M. Choi, S.K. Choi et. al. “Influence of film density on residual stress and resistivity for cu thin films deposited by bias sputtering.” Thin Solid Films 358 (2000) 202–205
Choi HM, Choi SK, Anderson O, Bange K (2000) Influence of film density on residual stress and resistivity for cu thin films deposited by bias sputtering. Thin Solid Films 358(1–2):202–205
Article
Google Scholar