Skip to main content
Log in

Independent position control of two identical magnetic microrobots in a plane using rotating permanent magnets

Journal of Micro-Bio Robotics Aims and scope Submit manuscript


Microrobots are attracting a lot of interest due to their numerous applications including micro-manipulation and targeted drug delivery. A major challenge in microrobotics is the control of multiple microrobots independently, especially identical microrobots. This paper proposes a novel actuation system for simultaneous planar position control of two identical magnetic microrobots. Four rotating permanent magnets are used to produce the desired magnetic field and consequently desired magnetic force. Angles of the permanent magnets are found analytically by PI control strategy to produce desired forces on microrobots. Microrobots move adequately far apart, so the interaction forces between microrobots can be neglected in comparison to the forces exerted on microrobots by rotating permanent magnets. The conducted simulations demonstrate the capability of the proposed system to control the position of two microrobots independently. Additionally, an experiment is performed to verify the capability of the proposed approach. Moving microrobots in the opposite and same directions and moving one microrobot to the desired position while keeping the other one stationary are illustrated in the experiment. Finally, the limitations of the presented system are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

Not applicable


  1. De Lanauze D, Felfoul O, Turcot J-P, Mohammadi M, Martel S (2014) Three-dimensional remote aggregation and steering of magnetotactic bacteria microrobots for drug delivery applications. Int J Robot Res 33(3):359–374

    Article  Google Scholar 

  2. Steager EB, Selman Sakar M, Magee C, Kennedy M, Cowley A, Kumar V (2013) Automated biomanipulation of single cells using magnetic microrobots. Int J Robot Res 32(3):346–359

    Article  Google Scholar 

  3. Chautems C, Lyttle S, Boehler Q, Nelson BJ (2018) Design and evaluation of a steerable magnetic sheath for cardiac ablations. IEEE Robot Autom Lett 3(3):2123–2128

    Article  Google Scholar 

  4. Khalil IS, Tabak AF, Sadek K, Mahdy D, Hamdi N, Sitti M (2017) Rubbing against blood clots using helical robots: modeling and in vitro experimental validation. IEEE Robot Autom Lett 2(2):927–934

    Article  Google Scholar 

  5. Zhang R, Sherehiy A, Wei D, Popa DO (2019) Design and characterization of solid articulated four axes microrobot for microfactory applications. J Micro-bio Robot 15(2):119–131

    Article  Google Scholar 

  6. Pawashe C, Floyd S, Sitti M (2009) Modeling and experimental characterization of an untethered magnetic micro-robot. Int J Robot Res 28(8):1077–1094

    Article  Google Scholar 

  7. Sul O, Falvo M, Taylor R, Washburn S, Superfine R (2006) Thermally actuated untethered impact-driven locomotive microdevices. Appl Phys Lett 89(20):203512

    Article  Google Scholar 

  8. Zhang R, Klotz JF, Wei D, Yang Z, Sherehiy A, Saadatzi MN, Popa DO (2020) SolarPede: a stick-and-slip, light-powered, Mobile micro-crawler. J Micro-bio Robot 16(1):1–12

    Article  Google Scholar 

  9. Donald BR, Levey CG, Paprotny I (2008) Planar microassembly by parallel actuation of MEMS microrobots. J Microelectromech Syst 17(4):789–808

    Article  Google Scholar 

  10. Ahmed D, Dillinger C, Hong A, Nelson BJ (2017) Artificial acousto-magnetic soft microswimmers. Adv Mater Technol 2(7):1700050

    Article  Google Scholar 

  11. Fischer P, Ghosh A (2011) Magnetically actuated propulsion at low Reynolds numbers: towards nanoscale control. Nanoscale 3(2):557–563

    Article  Google Scholar 

  12. Erni S, Schürle S, Fakhraee A, Kratochvil BE, Nelson BJ (2013) Comparison, optimization, and limitations of magnetic manipulation systems. J Micro-bio Robot 8(3–4):107–120

    Article  Google Scholar 

  13. Mahoney AW, Abbott JJ (2013) Generating rotating magnetic fields with a single permanent magnet for propulsion of untethered magnetic devices in a lumen. IEEE Trans Robot 30(2):411–420

    Article  Google Scholar 

  14. Mahoney AW, Abbott JJ (2016) Five-degree-of-freedom manipulation of an untethered magnetic device in fluid using a single permanent magnet with application in stomach capsule endoscopy. Int J Robot Res 35(1–3):129–147

    Article  Google Scholar 

  15. Wright SE, Mahoney AW, Popek KM, Abbott JJ (2017) The spherical-actuator-magnet manipulator: a permanent-magnet robotic end-effector. IEEE Trans Robot 33(5):1013–1024

    Article  Google Scholar 

  16. Xu T, Hwang G, Andreff N, Régnier S (2012) Scaled-up helical nanobelt modeling and simulation at low reynolds numbers. In: 2012 IEEE International Conference on Robotics and Automation, IEEE, pp 4045–4051

  17. Ryan P, Diller E (2017) Magnetic actuation for full dexterity microrobotic control using rotating permanent magnets. IEEE Trans Robot 33(6):1398–1409

    Article  Google Scholar 

  18. Johnson BV, Chowdhury S, Cappelleri D (2020) Local magnetic field design and characterization for independent closed-loop control of multiple mobile microrobots. IEEE ASME Trans Mechatron 25(2):526–534

    Article  Google Scholar 

  19. Cappelleri D, Efthymiou D, Goswami A, Vitoroulis N, Zavlanos M (2014) Towards mobile microrobot swarms for additive micromanufacturing. Int J Adv Robot Syst 11(9):150

    Article  Google Scholar 

  20. Chowdhury S, Johnson BV, Jing W, Cappelleri DJ (2017) Designing local magnetic fields and path planning for independent actuation of multiple mobile microrobots. J Micro-bio Robot 12(1–4):21–31

    Article  Google Scholar 

  21. Khalil IS, Tabak AF, Hamed Y, Tawakol M, Klingner A, El Gohary N, Mizaikoff B, Sitti M (2018) Independent actuation of two-tailed microrobots. IEEE Robot Autom Lett 3(3):1703–1710

    Article  Google Scholar 

  22. Diller E, Floyd S, Pawashe C, Sitti M (2011) Control of multiple heterogeneous magnetic microrobots in two dimensions on nonspecialized surfaces. IEEE Trans Robot 28(1):172–182

    Article  Google Scholar 

  23. Kei Cheang U, Lee K, Julius AA, Kim MJ (2014) Multiple-robot drug delivery strategy through coordinated teams of microswimmers. Appl Phys Lett 105(8):083705

    Article  Google Scholar 

  24. Diller E, Giltinan J, Sitti M (2013) Independent control of multiple magnetic microrobots in three dimensions. Int J Robot Res 32(5):614–631

    Article  Google Scholar 

  25. Salehizadeh M, Diller E (2020) Three-dimensional independent control of multiple magnetic microrobots via inter-agent forces. Int J Robot Res 39(12):1377–1396

    Article  Google Scholar 

  26. Wong D, Wang J, Steager E, Kumar V Control of multiple magnetic micro robots. In: ASME 2015 International design engineering technical conferences and computers and information in engineering conference, 2015. American Society of Mechanical Engineers Digital Collection

  27. Wong D, Steager EB, Kumar V (2016) Independent control of identical magnetic robots in a plane. IEEE Robot Autom Lett 1(1):554–561

    Article  Google Scholar 

  28. Ongaro F, Pane S, Scheggi S, Misra S (2018) Design of an electromagnetic setup for independent three-dimensional control of pairs of identical and nonidentical microrobots. IEEE Trans Robot 35(1):174–183

    Article  Google Scholar 

  29. Petruska AJ, Abbott JJ (2012) Optimal permanent-magnet geometries for dipole field approximation. IEEE T MAGN 49(2):811–819

    Article  Google Scholar 

  30. Happel J, Brenner H (2012) Low Reynolds number hydrodynamics: with special applications to particulate media, vol 1. Springer Science & Business Media

Download references


The authors would like to thank the Iranian National Science Foundation (INSF) for their financial support (Grant Number = 97022832).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hossein Nejat Pishkenari.

Ethics declarations

Conflicts of interest/Competing interests

The Authors declare that there is no conflict of interest.

Code availability

Not applicable

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information


(MP4 2186 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi, M., Nejat Pishkenari, H. Independent position control of two identical magnetic microrobots in a plane using rotating permanent magnets. J Micro-Bio Robot 17, 59–67 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: