Skip to main content

Teleoperation control scheme for magnetically actuated microrobots with haptic guidance

Abstract

An external magnetic field can be used in remotely controlling magnetic microrobots, making them promising candidates for diverse biomedical applications, including cell manipulation and therapy. This paper presents a teleoperation scheme to control magnetically actuated microrobots. The system was developed to allow human operators to control the motion for magnetically actuated microrobots and feel their interactions with the environment. The potential applications of the presented system will be in targeted drug delivery, micro-assembly, and biopsy procedures. A haptic interface constituted the core of the teleoperation system. It was used to provide the operator with force feedback to control the microrobots. In particular, virtual interaction forces were computed and transmitted to the human operators to guide them in performing path following tasks. The operating field of the microrobots was haptically rendered to avoid contacts with obstacles. Finally, a basic set of experimental trials were conducted, demonstrating that the average path tracking error was reduced by 67% when haptic feedback was used.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Gao W, Feng X, Pei A, Kane CR, Tam R, Hennessy C, Wang J (2014) Bioinspired helical microswimmers based on vascular plants. Nano Lett 14(1):305

    Article  Google Scholar 

  2. 2.

    Mertz L (2018) Tiny conveyance: micro-and nanorobots prepare to advance medicine. IEEE Pulse 9(1):19

    MathSciNet  Article  Google Scholar 

  3. 3.

    Cheang UK, Kim H, Milutinović D, Choi J, Kim MJ (2017) Feedback control of an achiral robotic microswimmer. J Bionic Eng 14(2):245

    Article  Google Scholar 

  4. 4.

    Khalil IS, Pichel MP, Abelmann L, Misra S (2013) Closed-loop control of magnetotactic bacteria. Int J Robot Res 32(6):637

    Article  Google Scholar 

  5. 5.

    Zhang X, Rogowski LW, Kim MJ (2020) Closed-loop control using high power hexapole magnetic tweezers for 3d micromanipulation. J Bionic Eng 17(1):113

    Article  Google Scholar 

  6. 6.

    Pacchierotti C, Scheggi S, Prattichizzo D, Misra S (2016) Haptic feedback for microrobotics applications: a review. Front Robot AI 3:53

    Article  Google Scholar 

  7. 7.

    Tan HZ, Walker L, Reifenberger R, Mahadoo S, Chiu G, Raman A, Helser A, Colilla P (2005) A haptic interface for human-in-the-loop manipulation at the nanoscale. In: First joint eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems. World haptics conference. IEEE, pp 271–276

  8. 8.

    Schmid A, Yechangunja R, Thalhammer S, Srinivasan MA (2012) Human-operated 3d micro-manipulator with haptic feedback. In: 2012 IEEE Haptics symposium (HAPTICS) (IEEE 2012), pp 517–522

  9. 9.

    Bhatti A, Khan B, Nahavandi S, Hanoun S, Gao D (2015) Intuitive haptics interface with accurate force estimation and reflection at nanoscale. In: Advances in global optimization. Springer, pp 507–514

  10. 10.

    Pacchierotti C, Magdanz V, Medina-Sánchez M, Schmidt OG, Prattichizzo D, Misra S (2015) Intuitive control of self-propelled microjets with haptic feedback. J Micro-Bio Robot 10(1-4):37

    Article  Google Scholar 

  11. 11.

    Boukhnifer M, Ferreira A (2013) Fault tolerant control of a teleoperated piezoelectric microgripper. Asian J Control 15(3):888

    MathSciNet  Article  Google Scholar 

  12. 12.

    Ousaid AM, Bolopion A, Haliyo S, Régnier S, Hayward V (2014) Stability and transparency analysis of a teleoperation chain for microscale interaction. In: 2014 IEEE International conference on robotics and automation (ICRA) (IEEE 2014), pp 5946–5951

  13. 13.

    Ammi M, Ferreira A (2005) Realistic visual and haptic rendering for biological-cell injection. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation. IEEE 2005), pp 918–923

  14. 14.

    Asgari M, Ghanbari A, Nahavandi S (2011) 3d particle-based cell modelling for haptic microrobotic cell injection. In: Proceedings of the 15th International Conference on Mechatronics Technology, Precision Mechatronics for Advanced Manufacturing, Service, and Medical Sectors (ICMT 2011), pp 1–6

  15. 15.

    Seif MA, Hassan A, El-Shaer AH, Alfar A, Misra S, Khalil ISM (2017) A magnetic bilateral tele-manipulation system using paramagnetic microparticles for micromanipulation of nonmagnetic objects. In: 2017 IEEE International conference on advanced intelligent mechatronics (AIM), pp 1095–1102

  16. 16.

    Guix M, Wang J, An Z, Adam G, Cappelleri DJ (2018) Real-time force-feedback micromanipulation using mobile microrobots with colored fiducials. IEEE Robot Autom Lett 3(4):3591

    Article  Google Scholar 

  17. 17.

    Zhang X, Kim H, Kim MJ (2019) Design, implementation, and analysis of a 3-d magnetic tweezer system with high magnetic field gradient. IEEE Trans Instrum Meas 68(3):680

    Article  Google Scholar 

  18. 18.

    Purcell EM (1977) Life at low reynolds number. Amer J Phys 45(1):3

    Article  Google Scholar 

  19. 19.

    Al Khatib E, Bhattacharjee A, Razzaghi P, Rogowski LW, Kim MJ, Hurmuzlu Y (2020) Magnetically actuated simple millirobots for complex navigation and modular assembly. IEEE Robot Autom Lett 5(2):2958

    Article  Google Scholar 

  20. 20.

    Zhang Z, Huang K, Menq CH (2009) Design, implementation, and force modeling of quadrupole magnetic tweezers. IEEE/ASME Trans Mechatron 15(5):704

    Article  Google Scholar 

  21. 21.

    Chen L, Offenhäusser A, Krause HJ (2015) Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads. Rev Sci Instrum 86(4):044701

    Article  Google Scholar 

  22. 22.

    Chang L, Howdyshell M, Liao WC, Chiang CL, Gallego-Perez D, Yang Z, Lu W, Byrd JC, Muthusamy N, Lee LJ et al (2015) Magnetic tweezers-based 3d microchannel electroporation for high-throughput gene transfection in living cells. Small 11(15):1818

    Article  Google Scholar 

  23. 23.

    Haber C, Wirtz D (2000) Magnetic tweezers for dna micromanipulation. Rev Sci Instrum 71(12):4561

    Article  Google Scholar 

  24. 24.

    Bausch AR, Möller W, Sackmann E (1999) Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys J 76(1):573

    Article  Google Scholar 

  25. 25.

    Zhang X, Rogowski LW, Kim MJ (2019) 3d micromanipulation of particle swarm using a hexapole magnetic tweezer. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 1581–1586

  26. 26.

    Ishiguro Y, Takano W, Nakamura Y (2018) Bilateral remote teaching and autonomous task execution with task progress feedback. Adv Robot 32(6):311

    Article  Google Scholar 

  27. 27.

    Yang K, Lu C, Zhao X, Kawamura R (2017) From bead to rod: Comparison of theories by measuring translational drag coefficients of micron-sized magnetic bead-chains in stokes flow. PloS One 12(11):e0188015

    Article  Google Scholar 

  28. 28.

    Pepe A, Chiaravalli D, Melchiorri C (2016) A hybrid teleoperation control scheme for a single-arm mobile manipulator with omnidirectional wheels. In: IEEE/RSJ International conference on intelligent robots and systems (IROS), pp 1450–1455. https://doi.org/10.1109/IROS.2016.7759236

  29. 29.

    Lau H, Wai L (2005) Implementation of position–force and position–position teleoperator controllers with cable-driven mechanisms. Robot Comput Integr Manuf 21(2):145

    Article  Google Scholar 

  30. 30.

    Atherton TJ, Kerbyson DJ (1999) Size invariant circle detection. Image Vis Comput 17(11):795

    Article  Google Scholar 

  31. 31.

    Matas J, Galambos C, Kittler J (2000) Robust detection of lines using the progressive probabilistic hough transform. Comput Vis Image Underst 78(1):119

    Article  Google Scholar 

  32. 32.

    Ephanov A, Hurmuzlu Y (1997) Implementation of sensory feedback and trajectory tracking in active telemanipulation systems. J Dyn Syst Measur Control 119:447

    Article  Google Scholar 

  33. 33.

    Hurmuzlu Y, Ephanov A, Stoianovici D (1998) Effect of a pneumatically driven haptic interface on the perceptional capabilities of human operators. Presence 7(3):290

    Article  Google Scholar 

  34. 34.

    Hurmuzulu Y, Marghitu DB (1993) Coiiisions of planar kinematic chains with multiple contact points. Advances in Robotics. Mechatron Haptic Interfaces 49:271

    Google Scholar 

  35. 35.

    Stoianovici D (1997) Achieving a massless haptic interface. Procedings of ASME Dynamic Systems and Control Division 1997

  36. 36.

    Galla ME, Al Khatib EI, Hurmuzlu Y, Richer E (2019) Force and stiffness controller design for a pneumatic haptic glove for virtual palpation. In: ASME 2019 Dynamic systems and control conference (american society of mechanical engineers digital collection, pp 1581–1586

  37. 37.

    Galla ME, Al Khatib EI, Hurmuzlu Y, Richer E (2020) Design and nonlinear control of a haptic glove for virtual palpation. In: Proceedings of the 2020 American Control Conference. Accepted. IEEE, pp 1581–1586

Download references

Acknowledgments

This work was funded by the National Science Foundation (CMMI 1623324).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yildirim Hurmuzlu.

Additional information

This work was funded by the National Science Foundation (CMMI 1623324)

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 14.8 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al Khatib, E., Zhang, X., Kim, M.J. et al. Teleoperation control scheme for magnetically actuated microrobots with haptic guidance. J Micro-Bio Robot 16, 161–171 (2020). https://doi.org/10.1007/s12213-020-00137-0

Download citation

Keywords

  • Microrobot
  • Teleoperation
  • Haptic
  • Motion control
  • Magnetically actuated robot