Skip to main content

Cellular expression through morphogen delivery by light activated magnetic microrobots

Abstract

Microrobots have many potential uses in microbiology since they can be remotely actuated and precisely manipulated in biochemical fluids. Cellular function and response depends on biochemicals. Therefore, various delivery methods have been developed for delivering biologically relevant cargo using microrobots. However, localized targeting without payload leakage during transport is challenging. Here, we design a microrobotic platform capable of on-demand delivery of signaling molecules in biological systems. The on-demand delivery method is based on a light-responsive photolabile linker which releases a cell-to-cell signaling molecule when exposed to light, integrated on the surface of microrobots. Successful delivery of the signaling molecules and subsequent gene regulation is also demonstrated. This proposed method can be used for multiple applications, especially in biology, engineering, and medicine where on-demand delivery of chemical cargo at targeted locations is important.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Notes

  1. 1.

    This paper is an invited extended version of [7] from the MARSS conference. The synthesis of the photocleavable linker, integration of the cylindrical microrobots with the linker, and protein expression in bacterial cells are the same as that paper, while we have added further data on the dose response of the signaling molecule in the cells. We have also demonstrated cellular response using directed microrobots and extended the microrobot type to helical microrobots, which will be used for further extension of the work in the future.

References

  1. 1.

    Ricotti L, Trimmer B, Feinberg AW, Raman R, Parker KK, Bashir R, Sitti M, Martel S, Dario P, Menciassi A (2017) Biohybrid actuators for robotics: A review of devices actuated by living cells. Sci Robot 2(12):495

    Article  Google Scholar 

  2. 2.

    Peyer KE, Zhang L, Nelson BJ (2013) Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5:1259–1272

    Article  Google Scholar 

  3. 3.

    Hunter EE, Brink EW, Steager EB, Kumar V (2018) Toward soft micro bio robots for cellular and chemical delivery. IEEE Robot Automation Lett 3(3):1592–1599

    Article  Google Scholar 

  4. 4.

    Yim S, Goyal K, Sitti M (2013) Magnetically actuated soft capsule with the multimodal drug release function. IEEE/ASME Trans Mechatron 18(4):1413–1418

    Article  Google Scholar 

  5. 5.

    Wang H, Huang Q, Shi Q, Yue T, Chen S, Nakajima M, Takeuchi M, Fukuda T (2015) Automated assembly of vascular-like microtube with repetitive single-step contact manipulation. IEEE Trans Biomed Eng 62(11):2620–2628

    Article  Google Scholar 

  6. 6.

    Bainton NJ, Bycroft BW, Chhabra SR, Stead P, Gledhill L, Hill P J, Rees CE, Winson MK, Salmond GP, Stewart GS, Williams P (1992) A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic biosynthesis in erwinia. Gene 116(1):87–91

    Article  Google Scholar 

  7. 7.

    Das S, Hunter EE, DeLateur NA, Steager EB, Weiss R, Kumar V (2018) Controlled delivery of signaling molecules using magnetic microrobots. In: 2018 international conference on manipulation, automation and robotics at small scales (MARSS), pp 1–5

  8. 8.

    Fusco S, Ullrich F, Pokki J, Chatzipirpiridis G, Ozkale B, Sivaraman K, Ergeneman O, Pané S, Nelson B (2014) Microrobots: A new era in ocular drug delivery. Expert Opin Drug Deliv 11:1–12, 07

    Article  Google Scholar 

  9. 9.

    Ceylan H, Giltinan J, Kozielski K, Sitti M (2017) Mobile microrobots for bioengineering applications. Lab Chip 17:1705– 1724

    Article  Google Scholar 

  10. 10.

    Xu T, Yu J, Yan X, Choi H, Zhang L (2015) Magnetic actuation based motion control for microrobots: An overview. Micromachines 6(9):1346–1364

    Article  Google Scholar 

  11. 11.

    Yang Y, Mu J, Xing B (2017) Photoactivated drug delivery and bioimaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 9(2):n/a–n/a

    Google Scholar 

  12. 12.

    Bozuyuk U, Yasa O, Yasa IC, Ceylan H, Kizilel S, Sitti M (2018) Light-triggered drug release from 3d-printed magnetic chitosan microswimmers. ACS Nano 12(9):9617–9625. pMID: 30203963

    Article  Google Scholar 

  13. 13.

    Qiu F, Fujita S, Mhanna R, Zhang L, Simona BR, Nelson BJ (2015) Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery. Adv Funct Mater 25(11):1666–1671

    Article  Google Scholar 

  14. 14.

    Pearson J, Pesci E, Iglewski B (1997) Roles of pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179(18): 5756–5767

    Article  Google Scholar 

  15. 15.

    Erkoc P, Yasa IC, Ceylan H, Yasa O, Alapan Y, Sitti M (2018) Mobile microrobots for active therapeutic delivery. Adv Ther 2(1):1800064

    Article  Google Scholar 

  16. 16.

    Ceylan H, Giltinan J, Kozielski K, Sitti M (2017) Mobile microrobots for bioengineering applications. Lab Chip 17(10):1705–1724

    Article  Google Scholar 

  17. 17.

    Tottori S, Zhang L, Qiu F, Krawczyk KK, Franco-Obregon A, Nelson BJ (2012) Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport. Adv Mater 24(6):811– 816

    Article  Google Scholar 

  18. 18.

    Das S, Steager EB, Stebe KJ, Kumar V (2017) Simultaneous control of spherical microrobots using catalytic and magnetic actuation. In: 2017 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pp 1–6

  19. 19.

    Das S, Steager EB, Hsieh MA, Stebe KJ, Kumar V (2018) Experiments and open-loop control of multiple catalytic microrobots. J Micro-Bio Robot 14(1):25–34

    Article  Google Scholar 

  20. 20.

    Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS ONE 6(2):e16765

    Article  Google Scholar 

  21. 21.

    Karig D, Martini KM, Lu T, DeLateur NA, Goldenfeld N, Weiss R (2018) Stochastic Turing patterns in a synthetic bacterial population. Proc Natl Acad Sci 115(26):6572–6577

    Article  Google Scholar 

  22. 22.

    Klan P, Solomek T, Bochet CG, Blanc A, Givens R, Rubina M, Popik V, Kostikov A, Wirz J (2013) Photoremovable protecting groups in chemistry and biology: Reaction mechanisms and efficacy. Chem Rev 113(1):119–191. pMID: 23256727

    Article  Google Scholar 

  23. 23.

    Neises B, Steglich W (1978) Simple method for the esterification of carboxylic acids. Angew Chem Int Ed Engl 17(7):522–524

    Article  Google Scholar 

  24. 24.

    Coon CL, Blucher WG, Hill ME (1973) Aromatic nitration with nitric acid and trifluoromethanesulfonic acid. J Org Chem 38(25):4243–4248

    Article  Google Scholar 

  25. 25.

    Suhs T, Konig B (2006) Synthesis of functionalized guanidino amino acids. Chem Eur J 12(31):8150–8157

    Article  Google Scholar 

  26. 26.

    Tang S, Wang J, Zhu Q, Chen Y, Li X (2014) Preparation of rutile tio2 coating by thermal chemical vapor deposition for anticoking applications. ACS Appl Mater Interfaces 6(19):17157–17165. pMID: 25192018. [Online]. Available: https://doi.org/10.1021/am5048762

    Article  Google Scholar 

  27. 27.

    Paz Y (2011) Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications. Beilstein J Nanotechnol 2:845–861

    Article  Google Scholar 

  28. 28.

    Thomas AG, Syres KL (2012) Adsorption of organic molecules on rutile tio2 and anatase tio2 single crystal surfaces. Chem Soc Rev 41:4207–4217. https://doi.org/10.1039/C2CS35057B

    Article  Google Scholar 

  29. 29.

    Pesci EC, Pearson JP, Seed PC, Iglewski BH (1997) Regulation of las and rhl quorum sensing in pseudomonas aeruginosa. J Bacteriol 179(10):3127–3132

    Article  Google Scholar 

  30. 30.

    Loeschcke A, Binder D, Drepper T, Jaeger K-E, Grünberger A, Probst C, Kohlheyer D, Wiechert W, Pietruszka J, Bier C (2014) Light-responsive control of bacterial gene expression: precise triggering of the lac promoter activity using photocaged IPTG. Integr Biol 6(8):755–765, 06. https://doi.org/10.1039/c4ib00027g

    Article  Google Scholar 

  31. 31.

    Steager EB, Wong D, Chodosh N, Kumar V (2015) 2015 IEEE international conference on robotics and automation (ICRA)

  32. 32.

    Il’ichev YV, Schworer MA, Wirz J (2004) Photochemical reaction mechanisms of 2-nitrobenzyl compounds: Methyl ethers and caged atp. J Am Chem Soc 126(14):4581–4595. pMID: 15070376

    Article  Google Scholar 

  33. 33.

    Abbott JJ, Peyer KE, Lagomarsino MC, Zhang L, Dong L, Kaliakatsos IK, Nelson BJ (2009) How should microrobots swim? Int J Robot Res 28(11-12):1434–1447

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of ONR grant N00014-11-1-0725, NSF grant CNS-1446474 and NSF grant CNS-1446592. E.E.H. was supported by NSF Graduate Research Fellowship grant DGE-1845298

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sambeeta Das.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(AVI 9.30 MB)

(AVI 13.1 MB)

(AVI 513 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, S., Hunter, E.E., DeLateur, N.A. et al. Cellular expression through morphogen delivery by light activated magnetic microrobots. J Micro-Bio Robot 15, 79–90 (2019). https://doi.org/10.1007/s12213-019-00119-x

Download citation

Keywords

  • Microrobots
  • Magnetic
  • Synthetic biology