Skip to main content

Thermocapillary micromanipulation: force characterization and Cheerios interactions


Thermocapillary micromanipulation is an emerging non-contact micromanipulation technique, allowing to displace particles in the liquid bulk or at the free surface. When the particles are at the free surface and the surface is heated from the top, the actuation force is repulsive and not attractive. The handling technique is then intrinsically unstable. Therefore, control schemes have been reported recently to deal with this instability. They are based on an experimental characterization of the physical system (depending on the laser, the liquid and the particle properties). In this paper, we explain how we could make use of these handling schemes to estimate the thermocapillary force developed by the laser on the particle to be about 8 nN. This work is a first step towards the handling of multiple particles at the air/liquid interface.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Oulmas A, Andreff N, Régnier S (2017) 3D closed-loop motion control of swimmer with flexible flagella at low Reynolds numbers. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 1877–1882

  2. 2.

    Gauthier V, Bolopion A, Gauthier M (2017) Analytical formulation of the electric field induced by electrode arrays: towards automated dielectrophoretic cell sorting. Micromachines 8(8):253

    Article  Google Scholar 

  3. 3.

    Zhou Q, Sariola V, Latifi K, Liimatainen V (2016) Nat Commun 7:12764.

    Article  Google Scholar 

  4. 4.

    Yin M, Gerena E, Pacoret C, Haliyo DS, Régnier S (2017) High-bandwidth 3D force feedback optical tweezers for interactive bio-manipulation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 1889–1894

  5. 5.

    Terrazas MR, Bolopion A, Beugnot J-C, Lambert P, Gauthier M (2017) 1D manipulation of a micrometer size particle actuated via thermocapillary convective flows. In: Intelligent Robots and Systems (IROS), pp 408–413

  6. 6.

    Vela E (2010) Non-contact microscale manipulation using laser-induced convection flows. Ph.D. thesis, Paris 6

  7. 7.

    Winterer F, Maier CM, Pernpeintner C, Lohmüller T (2018) Optofluidic transport and manipulation of plasmonic nanoparticles by thermocapillary convection. Soft Matter 14(4):628–634

    Article  Google Scholar 

  8. 8.

    Vela E, Pacoret C, Bouchigny S, Regnier S, Rink K, Bergander A (2008) In: Intelligent Robots and Systems (IROS), pp. 913–918.

  9. 9.

    Munoz E, Quispe J, Lambert P, Bolopion A, Terrazas R, Régnier S, Vela E (2017) Optimizing the speed of single infrared-laser-induced thermocapillary flows micromanipulation by using design of experiments. J Micro-Bio Robot 12:65–72

    Article  Google Scholar 

  10. 10.

    Hu W, Fan Q, Ohta AT (2014) Robotics and Biomimetics 1(1):1.

    Article  Google Scholar 

  11. 11.

    Hu W, Fan Q, Ohta AT (2013) Lab Chip 13(12):2285.

    Article  Google Scholar 

  12. 12.

    Mallea RT (2017) Thermocapillary micromanipulation: laser induced convective flows towards controlled handling of particles at the free surface. Ph.D. thesis, Université libre de Bruxelles / Université de Franche-Comté

  13. 13.

    Terrazas MR, Bolopion A, Beugnot J-C, Gauthier M, Lambert P (2017) Laser-induced thermocapillary convective flows: a new approach for non-contact actuation at microscale at the fluid/gas interface. IEEE/ASME Trans Mechatron 22(2):693–704

    Article  Google Scholar 

  14. 14.

    Ng JMK, Fuerstman MJ, Grzybowski BA, Stone HA, Whitesides GM (2003) J Am Chem Soc 125(26):7948. PMID: 12823016

    Article  Google Scholar 

  15. 15.

    Jesacher A, Fürhapter S, Maurer C, Bernet S, Ritsch-Marte M (2006) Opt. Express 14(13):6342.

    Article  Google Scholar 

  16. 16.

    Gupta S, Singh N, Sastry M, Kakkar R, Pasricha R (2010) Thin Solid Films 519(3):1072. Biomolecular Electronics and Organic Nanotechnology for Environmental Preservation

    Article  Google Scholar 

  17. 17.

    Rogers P, Gralinski I, Galtry C, Neild A (2013) Microfluid Nanofluid 14(3-4):469.

    Article  Google Scholar 

  18. 18.

    Dkhil M, Kharboutly M, Bolopion A, Regnier S, Gauthier M (2017) IEEE Trans Autom Sci Eng 14(3):1387.

    Article  Google Scholar 

  19. 19.

    Terrazas MR, Bolopion A, Beugnot J-C, Gauthier M, Lambert P (2018) Closed-loop particle positioning control using laser-induced thermocapillary convective flows at the fluid/gas interface at micrometric scale. IEEE/ASME Trans Mechatron 23(4):8371646

    Google Scholar 

  20. 20.

    Rahman MA, Takahashi N, Siliga KF, Ng NK, Wang Z, Ohta AT (2017) Vision-assisted micromanipulation using closed-loop actuation of multiple microrobots. Robot Biomimet 4(1):7

    Article  Google Scholar 

  21. 21.

    Rahman MA, Wang Z, Ohta AT (2017) Collaborative micromanipulation using multiple bubble microrobots in an open reservoir. Micro Nano Lett 12(11):891–896

    Article  Google Scholar 

  22. 22.

    Rahman MA, Cheng J, Wang Z, Ohta AT (2017) Cooperative micromanipulation using the independent actuation of fifty microrobots in parallel. Sci Rep 7(1):3278

    Article  Google Scholar 

  23. 23.

    Terrazas MR, De Maeijer A, Bolopion A, Gauthier M, Kinnaert M, Lambert P (2018) Capillary dipoles: towards thermocapillary micromanipulation of multiple particles floating at the free surface. In: MARSS Conference

  24. 24.

    Xu J, Plaxco KW, Allen SJ (2006) J Chem Phys 124(3):036101 .

    Article  Google Scholar 

  25. 25.

    Marmur A, Ras RHA (2011) Soft Matter 7:7382.

    Article  Google Scholar 

  26. 26.

    Kralchevsky PA, Nagayama K (2001) Chapter 7 - Lateral Capillary Forces between Partially Immersed Bodies (Elsevier), Studies in Interface Science 10:287–350.

    Google Scholar 

  27. 27.

    Flynn RA, Birkbeck AL, Gross M, Ozkan M, Shao B, Wang MM, Esener SC (2002) Parallel transport of biological cells using individually addressable {VCSEL} arrays as optical tweezers. Sens Actuators B Chem 87(2):239–243

    Article  Google Scholar 

  28. 28.

    Chowdhury S, Švec P, Thakur A, Wang C, Losert W, Gupta SK (2013) Enhancing range of transport in optical tweezers assisted microfluidic chambers using automated stage motion. In: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p V001T09A031

  29. 29.

    Zhong MC, Wei XB, Zhou JH, Wang ZQ, Li YM (2013) Trapping red blood cells in living animals using optical tweezers. Nat Commun 4:1768

    Article  Google Scholar 

  30. 30.

    Dorr A, Hardt S, Masoud H, Stone HA (2016) J Fluid Mech 790:607–618.

    MathSciNet  Article  Google Scholar 

Download references


Supported by 7/38 MicroMAST IAP (Belspo, Belgium) and by the EIPHI Graduate School (contract “ANR-17-EURE-0002”).

Author information



Corresponding author

Correspondence to Aude Bolopion.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Terrazas, R., De Maeijer, A., Bolopion, A. et al. Thermocapillary micromanipulation: force characterization and Cheerios interactions. J Micro-Bio Robot 15, 13–22 (2019).

Download citation


  • Thermocapillary micromanipulation
  • Capillary forces
  • Optofluidics
  • Feedforward
  • Capillary dipole
  • Cheerios effect