Skip to main content
Log in

Characterization of bistable mechanisms for microrobotics and mesorobotics

Comparison between microfabrication and additive manufacturing

  • Research Paper
  • Published:
Journal of Micro-Bio Robotics Aims and scope Submit manuscript

Abstract

The use of mechanical bistable structures in the design of microrobots and mesorobots has many advantages especially for flexible robotic structures. However, depending on the used fabrication technology, the adequacy of theoretical and experimental mechanical behaviors can vary widely. In this paper, we present the manufacturing results of bistable structures made with two extensively used contemporary technologies: MEMS and FDM additive manufacturing. Key issues of these fabrication technologies are discussed in the context of microrobotics and mesorobotics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Grossard M, Chaillet N, Régnier S (2013) Flexible robotics: applications to multiscale manipulations. Wiley

  2. Chalvet V, Haddab Y, Lutz P (2013) A microfabricated planar digital microrobot for precise positioning based on bistable modules. IEEE - Trans Robot 29(3):641–649

    Article  Google Scholar 

  3. Zaidi SSH, Cherfi-Boulanger Z, Lamarque F (2011) Contactless energy transfer and control strategy for bistable micro-actuator. University of Technology of Compiègne, Ph.D Thesis

    Google Scholar 

  4. Camescasse B (2013) Actionnements statique et dynamique dun mecanisme bistable: aspects modlisation, conception et exprimental, Ph.D. Thesis, Pierre and Marie University Curie

  5. Cazottes P (2009) Actionnement des systemes bistables: modélisation et études expérimentales, Ph.D Thesis, Pierre and Marie University Curie

  6. Pane IZ, Asano T (2008) Investigation on bistability and fabrication of bistable prestressed curved beam. Jpn J Appl Phys 47:52–91

    Article  Google Scholar 

  7. Charlot B, Sun W, Yamashita K, Fujita H, Toshiyoshi H (2008) In-plane bistable nanowire for memory devices. In: Symposium on design, test, integration and packaging of MEMS/MOEMS. IEEE, pp 254–258

  8. Park S, Hah D (2008) Pre-shaped buckled-beam actuators: theory and experiments. Sensors Actuators Phys 148(1):186–192

    Article  Google Scholar 

  9. Qiu J, Lang J, Slocum A (2004) . A curved-beam bistable mechanism 13(2):137–146

    Google Scholar 

  10. Liao BT, Shen HH, Liao HH, Yang YJ (2009) A bi-stable 2x2 optical switch monolithically integrated with variable optical attenuators. Opt Express 17(22):19919–19925

    Article  Google Scholar 

  11. Jensen BD, Parkinson MB, Kurabayashi K, Howell LL, Baker MS (2001) Design optimization of a fully-compliant bistable micromechanism. ASME Int Mech Eng Congress Exposition 48109:21–25

    Google Scholar 

  12. Hussein H, Chalvet V, Le Moal P, Bourbon G, Haddab Y, Lutz P (2014) Design optimization of bistable modules electrothermally actuated for digital microrobotics. In: IEEE/ASME International conference on advanced intelligent mechatronics AIM, pp 1273–1278

  13. Gao R, Li M, Wang Q, Zhao J, Liu S (2018) A novel design method of bistable structures with required snap-through properties. Sensors Actuators A Phys 272:295–300

    Article  Google Scholar 

  14. Vangbo M (1998) An analytical analysis of a compressed bistable buckled beam. Sensors Actuators A Phys 69(3):212–216

    Article  Google Scholar 

  15. Chiao M, Lin L (2000) Self-buckling of micromachined beams under resistive heating. J Microelectromech Syst 9(1):146–151

    Article  Google Scholar 

  16. Emam SA, Nayfeh AH (2004) On the nonlinear dynamics of a buckled beam subjected to a primary-resonance excitation. Nonlinear Dyn 35(1):1–17

    Article  MATH  Google Scholar 

  17. Nayfeh AH, Emam SA (2008) Exact solution and stability of postbuckling configurations of beams. Nonlinear Dyn 54(4):395–408

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen JS, Tsao HW (2013) Static snapping load of a hinged extensible elastica. Appl Math Model 37 (18–19):8401–8408

    Article  MathSciNet  MATH  Google Scholar 

  19. Hussein H, Le Moal P, Bourbon G, Haddab Y, Lutz P (2015) Modeling and stress analysis of a pre-shaped curved beam: influence of high modes of buckling. Int J Appl Mech 7(4):1550055

    Article  Google Scholar 

  20. Krylov S, Dick N (2010) Dynamic stability of electrostatically actuated initially curved shallow micro beams. Contin Mech Thermodyn 22(6-8):445–468

    Article  MathSciNet  MATH  Google Scholar 

  21. Tajaddodianfar F, Yazdi MH, Pishkenari HN (2014) Dynamics of bistable initially curved shallow microbeams: effects of the electrostatic fringing fields. In: IEEE/ASME international conference on advanced intelligent mechatronics AIM, pp 1279–1283

  22. Stoimenov BL, Rossiter JM, Mukai T (2007) Manufacturing of ionic polymer-metal composites (IPMCs) that can actuate into complex curves. Electroactive polymer actuators and devices (EAPAD). In: International society for optics and photonics, vol 6524

  23. Timoshenko S (1961) Theory of elastic stability. McGraw-Hill

  24. Chen Q, Haddab Y, Lutz P (2010) Microfabricated bistable module for digital microrobotics. J Micro-Nano Mechatron 6:1–12

    Article  Google Scholar 

  25. Mohamed OA, Masood SH, Bhowmik JL (2015) Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf 3(1):42–53

    Article  Google Scholar 

  26. Ulu E, Korkmaz E, Yay K, Ozdoganlar OB, Kara LB (2015) Enhancing the structural performance of additively manufactured objects through build orientation optimization. J Mech Des 137(11):111410

    Article  Google Scholar 

  27. Ion A, Wall L, Kovacs R, Baudisch P (2017) Digital mechanical metamaterials. In: The 2017 CHI conference on human factors in computing systems, pp 977–988

  28. Ben Salem M, Aiche G, Rubbert L, Renaud P, Haddab Y (2018) Design of a microbiota sampling capsule using 3d-printed bistable. In: 40th IEEE international engineering in medicine and biology conference, pp 4868–4871

  29. Hussein H, Le Moal P, Younis R, Bourbon G, Haddab Y, Lutz P (2019) On the design of a preshaped curved beam bistable mechanism. Mech Mach Theory 131:204–217

    Article  Google Scholar 

  30. Hussein H (2015) Contribution to digital microrobotics: modeling, design and fabrication of curved beams, U-shaped actuators and multistable microrobots. Bourgogne Franche-Comté University, PhD thesis

    Google Scholar 

Download references

Acknowledgments

This research is partially supported by the Investissements d’Avenir (Labex CAMI ANR-11-LABX-0004). The authors would like to thank Gilles Bourbon and Patrice Le Moal from FEMTO-ST Institute for their contributions to the simulation, the development of MEMS process and for microfabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouna Ben Salem.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Salem, M., Hussein, H., Aiche, G. et al. Characterization of bistable mechanisms for microrobotics and mesorobotics. J Micro-Bio Robot 15, 65–77 (2019). https://doi.org/10.1007/s12213-019-00113-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12213-019-00113-3

Keywords

Navigation