Abstract
Magnetic microrobots have been shown to be effective at navigating microscale environments which has led to many investigations reguarding the motion control of microrobots. To increase the feasibility of using microrobots for microscale tasks and widen the range of potential applications, the use of autonomous navigation systems will be essential. In this work, the magnetic particle based achiral microrobots are controlled wirelessly using a combination of rotating and static magnetic fields generated from electromagnetic coils in an approximate Helmholtz configuration. In previous work, we developed both a kinematic model for particle based microrobots and a feedback controller; once implemented, the controller can guide the microrobots to any goal positions. In the present work, we demonstrate path planning motion control for magnetic particle based microrobots in microfluidic channels formed using patterned static SU-8 microstructures. The microrobots were able to avoid collision with the microstructures, which acted as static obstacles, by using a gradient path method. In experiments, microrobots were able to reach the final goal position by following waypoints of generated path from the gradient path method in a static obstacle laden environment.
This is a preview of subscription content, access via your institution.







References
- 1.
Purcell EM (1977) Life at low Reynolds number. Am J Phys 45:3–11
- 2.
Zhang L, Abbott JJ, Dong L, Kratochvil BE, Bell D, Nelson BJ (2009) Artificial bacterial flagella: fabrication and magnetic control. Appl Phys Lett 94:064107
- 3.
Zhang L, Ruh E, Grützmacher D, Dong L, Bell DJ, Nelson BJ et al (2006) Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical Nanobelts. Nano Lett 6:1311–1317
- 4.
Tottori S, Zhang L, Qiu F, Krawczyk KK, Franco-Obregón A, Nelson BJ (2012) Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv Mater 24:811–816
- 5.
Ghosh A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9:2243–2245
- 6.
Cheang UK, Roy D, Lee JH, Kim MJ (2010) Fabrication and magnetic control of bacteria-inspired robotic microswimmers. Appl Phys Lett 97:213704
- 7.
Temel FZ, Yesilyurt S (2011) Magnetically actuated micro swimming of bio-inspired robots in mini channels. in International Conference on Mechatronics, Istanbul, Turkey:342–347
- 8.
Gao W, Feng X, Pei A, Kane CR, Tam R, Hennessy C et al (2013) Bioinspired helical microswimmers based on vascular plants. Nano Lett 14:305–310
- 9.
Kim DH, Cheang UK, Kohidai L, Byun D, Kim MJ (2010) Artificial magnetotactic motion control of Tetrahymena pyriformis using ferromagnetic nanoparticles: a tool for fabrication of microbiorobots. Appl Phys Lett 97:173702
- 10.
Steager EB, Sakar MS, Kumar V, Pappas GJ, Kim MJ (2011) Electrokinetic and optical control of bacterial microrobots. J Micromech Microeng 21:035001
- 11.
Leoni M, Kotar J, Bassetti B, Cicuta P, Lagomarsino MC (2009) A basic swimmer at low Reynolds number. Soft Matter 5:472–476
- 12.
Mori N, Kuribayashi K, Takeuchi S (2010) Artificial flagellates: analysis of advancing motions of biflagellate micro-objects. Appl Phys Lett 96:083701
- 13.
Peyer KE, Zhang L, Nelson BJ (2013) Bio-inspired magnetic swimming microrobots for biomedical applications. Nano 5:1259–1272
- 14.
Sakar MS, Steager EB, Kim DH, Kim MJ, Pappas GJ, Kumar V (2010) Single cell manipulation using ferromagnetic composite microtransporters. Appl Phys Lett 96:043705
- 15.
Khalil ISM, Keuning JD, Abelmann L, Misra S (2012) Wireless magnetic-based control of paramagnetic microparticles. In: 2012 4th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), pp 460–466
- 16.
Belharet K, Folio D, Ferreira A (2014) Study on rotational and unclogging motions of magnetic chain-like microrobot. In: 2014 IEEE/RSJ international conference on intelligent robots and systems, pp 834–839
- 17.
Khalil ISM, Abelmann L, Misra S (2014) Magnetic-based motion control of paramagnetic microparticles with disturbance compensation. IEEE Trans Magn 50(10):1
- 18.
Chowdhury S, Jing W, Jaron P, Cappelleri DJ (2015) Path planning and control for autonomous navigation of single and multiple magnetic mobile microrobots, p V004T09A040
- 19.
Chowdhury S, Jing W, Cappelleri D (2016) Towards independent control of multiple magnetic mobile microrobots. Micromachines 7:3
- 20.
Chowdhury S, Johnson BV, Jing W, Cappelleri DJ (June 01 2017) Designing local magnetic fields and path planning for independent actuation of multiple mobile microrobots. Journal of Micro-Bio Robotics 12:21–31
- 21.
Hu S, Sun D, Feng G (2010) Dynamics analysis and closed-loop control of biological cells in transportation using robotic manipulation system with optical tweezers. In: 2010 I.E. Conference on automation science and engineering (CASE), pp 240–245
- 22.
Tanaka Y, Kawada H, Hirano K, Ishikawa M, Kitajima H (2018) Automated manipulation of non-spherical micro-objects using optical tweezers combined with image processing techniques. Opt Express 16: 15115–15122
- 23.
Banerjee AG, Pomerance A, Losert W, Gupta SK (2010) Developing a stochastic dynamic programming framework for optical tweezer-based automated particle transport operations. IEEE Trans Autom Sci Eng 7:218–227
- 24.
Ju T, Liu S, Yang J, Sun D (2011) Apply RRT-based path planning to robotic manipulation of biological cells with optical tweezer. In: 2011 International conference on mechatronics and automation (ICMA), pp 221–226
- 25.
Cappelleri DJ, Fatovic M, Shah U (2011) Caging micromanipulation for automated microassembly. In: 2011 I.E. International conference on robotics and automation (ICRA), pp 3145–3150
- 26.
Belharet K, Folio D, Ferreira A (2010) Endovascular navigation of a ferromagnetic microrobot using MRI-based predictive control. In: 2010 IEEE/RSJ International conference on intelligent robots and systems (IROS), pp 2804–2809
- 27.
Kim DH, Brigandi S, Julius AA, Min Jun K (2011) Real-time feedback control using artificial magnetotaxis with rapidly-exploring random tree (RRT) for Tetrahymena pyriformis as a microbiorobot. In: 2011 I.E. International conference on robotics and automation, pp 3183–3188
- 28.
Pieters R, Tung H-W, Charreyron S, Sargent DF, Nelson BJ (2015) RodBot: a rolling microrobot for micromanipulation. In: 2015 I.E. International conference on robotics and automation (ICRA), pp 4042–4047
- 29.
Pieters R, Lombriser S, Alvarez-Aguirre A, Nelson BJ (2016) Model predictive control of a magnetically guided rolling microrobot. IEEE Robotics and Automation Letters 1:455–460
- 30.
Scheggi S, Misra S (2016) An experimental comparison of path planning techniques applied to micro-sized magnetic agents. In: 2016 international conference on manipulation, automation and robotics at small scales (MARSS), pp 1–6
- 31.
Soetanto D, Lapierre L, Pascoal A (2003)Adaptive, non-singular path-following control of dynamic wheeled robots. In: 42nd IEEE International conference on decision and control (IEEE Cat No03CH37475), vol 2, pp 1765–1770
- 32.
Jiang Z-P, Lefeber E, Nijmeijer H (2001) Saturated stabilization and tracking of a nonholonomic mobile robot. In: Systems & control letters, vol 42, pp 327–332
- 33.
Belharet K, Folio D, Ferreira A (2013) Simulation and planning of a magnetically actuated microrobot navigating in the arteries. IEEE Trans Biomed Eng 60:994–1001
- 34.
Xu T, Hwang G, Andreff N, Régnier S (2015) Planar path following of 3-D steering scaled-up helical microswimmers. IEEE Trans Robot 31:117–127
- 35.
Cheang UK, Milutinović D, Choi J, Kim MJ (2014) Towards model-based control of achiral microswimmers. In: Presented at the the ASME dynamic systems and control conference, TX, USA
- 36.
Konolige K (2000) A gradientmethod for realtime robot control. In: 2000 IEEE/RSJ Proceedings in international conference on intelligent Robots and Systems (IROS 2000) (Cat. No00CH37113), vol 1, pp 639–646
- 37.
Happel J, Brenner H (1965) Low Reynolds number hydrodynamics: with special applications to particulate media, vol 1, Springer
- 38.
Siciliano B, Sciavicco L, Villani L, Oriolo G (2010) Robotics: modelling, planning and control. Springer Science & Business Media
- 39.
Aicardi M, Casalino G, Bicchi A, Balestrino A (1995) Closed loop steering of unicycle like vehicles via Lyapunov techniques. IEEE Robot Autom Mag 2:27–35
- 40.
Farrokhsiar M, Pavlik G, Najjaran H (2013) An integrated robust probing motion planning and control scheme: a tube-based MPCapproach. Robot Auton Syst 61:1379–1391
- 41.
Cheang UK, Kim H, Milutinović D, Choi J, Kim MJ (2017) Feedback control of an achiral robotic microswimmer. J Bionic Eng 14:245–259
- 42.
Cheang UK, Meshkati F, Kim H, Lee K, Fu HC, Kim MJ (2016) Versatile microrobotics using simplemodular subunits, vol 6, p 30472
Acknowledgements
We thank Prof. Dejan Milutinović and Prof. Jongeun Choi for their contribution in developing the kinematic model. This work was funded by National Science Foundation (CMMI#1712096).
Author information
Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
ESM 1
(MP4 766 kb)
Rights and permissions
About this article
Cite this article
Kim, H., Cheang, U., Rogowski, L.W. et al. Motion planning of particle based microrobots for static obstacle avoidance. J Micro-Bio Robot 14, 41–49 (2018). https://doi.org/10.1007/s12213-018-0107-0
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- Microrobot
- Magnetic control
- Obstacle avoidance
- Path planning