Motion planning of particle based microrobots for static obstacle avoidance


Magnetic microrobots have been shown to be effective at navigating microscale environments which has led to many investigations reguarding the motion control of microrobots. To increase the feasibility of using microrobots for microscale tasks and widen the range of potential applications, the use of autonomous navigation systems will be essential. In this work, the magnetic particle based achiral microrobots are controlled wirelessly using a combination of rotating and static magnetic fields generated from electromagnetic coils in an approximate Helmholtz configuration. In previous work, we developed both a kinematic model for particle based microrobots and a feedback controller; once implemented, the controller can guide the microrobots to any goal positions. In the present work, we demonstrate path planning motion control for magnetic particle based microrobots in microfluidic channels formed using patterned static SU-8 microstructures. The microrobots were able to avoid collision with the microstructures, which acted as static obstacles, by using a gradient path method. In experiments, microrobots were able to reach the final goal position by following waypoints of generated path from the gradient path method in a static obstacle laden environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Purcell EM (1977) Life at low Reynolds number. Am J Phys 45:3–11

    Article  Google Scholar 

  2. 2.

    Zhang L, Abbott JJ, Dong L, Kratochvil BE, Bell D, Nelson BJ (2009) Artificial bacterial flagella: fabrication and magnetic control. Appl Phys Lett 94:064107

    Article  Google Scholar 

  3. 3.

    Zhang L, Ruh E, Grützmacher D, Dong L, Bell DJ, Nelson BJ et al (2006) Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical Nanobelts. Nano Lett 6:1311–1317

  4. 4.

    Tottori S, Zhang L, Qiu F, Krawczyk KK, Franco-Obregón A, Nelson BJ (2012) Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv Mater 24:811–816

    Article  Google Scholar 

  5. 5.

    Ghosh A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9:2243–2245

    Article  Google Scholar 

  6. 6.

    Cheang UK, Roy D, Lee JH, Kim MJ (2010) Fabrication and magnetic control of bacteria-inspired robotic microswimmers. Appl Phys Lett 97:213704

    Article  Google Scholar 

  7. 7.

    Temel FZ, Yesilyurt S (2011) Magnetically actuated micro swimming of bio-inspired robots in mini channels. in International Conference on Mechatronics, Istanbul, Turkey:342–347

  8. 8.

    Gao W, Feng X, Pei A, Kane CR, Tam R, Hennessy C et al (2013) Bioinspired helical microswimmers based on vascular plants. Nano Lett 14:305–310

    Article  Google Scholar 

  9. 9.

    Kim DH, Cheang UK, Kohidai L, Byun D, Kim MJ (2010) Artificial magnetotactic motion control of Tetrahymena pyriformis using ferromagnetic nanoparticles: a tool for fabrication of microbiorobots. Appl Phys Lett 97:173702

    Article  Google Scholar 

  10. 10.

    Steager EB, Sakar MS, Kumar V, Pappas GJ, Kim MJ (2011) Electrokinetic and optical control of bacterial microrobots. J Micromech Microeng 21:035001

    Article  Google Scholar 

  11. 11.

    Leoni M, Kotar J, Bassetti B, Cicuta P, Lagomarsino MC (2009) A basic swimmer at low Reynolds number. Soft Matter 5:472–476

    Article  Google Scholar 

  12. 12.

    Mori N, Kuribayashi K, Takeuchi S (2010) Artificial flagellates: analysis of advancing motions of biflagellate micro-objects. Appl Phys Lett 96:083701

  13. 13.

    Peyer KE, Zhang L, Nelson BJ (2013) Bio-inspired magnetic swimming microrobots for biomedical applications. Nano 5:1259–1272

    Google Scholar 

  14. 14.

    Sakar MS, Steager EB, Kim DH, Kim MJ, Pappas GJ, Kumar V (2010) Single cell manipulation using ferromagnetic composite microtransporters. Appl Phys Lett 96:043705

    Article  Google Scholar 

  15. 15.

    Khalil ISM, Keuning JD, Abelmann L, Misra S (2012) Wireless magnetic-based control of paramagnetic microparticles. In: 2012 4th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), pp 460–466

  16. 16.

    Belharet K, Folio D, Ferreira A (2014) Study on rotational and unclogging motions of magnetic chain-like microrobot. In: 2014 IEEE/RSJ international conference on intelligent robots and systems, pp 834–839

    Google Scholar 

  17. 17.

    Khalil ISM, Abelmann L, Misra S (2014) Magnetic-based motion control of paramagnetic microparticles with disturbance compensation. IEEE Trans Magn 50(10):1

    Article  Google Scholar 

  18. 18.

    Chowdhury S, Jing W, Jaron P, Cappelleri DJ (2015) Path planning and control for autonomous navigation of single and multiple magnetic mobile microrobots, p V004T09A040

  19. 19.

    Chowdhury S, Jing W, Cappelleri D (2016) Towards independent control of multiple magnetic mobile microrobots. Micromachines 7:3

    Article  Google Scholar 

  20. 20.

    Chowdhury S, Johnson BV, Jing W, Cappelleri DJ (June 01 2017) Designing local magnetic fields and path planning for independent actuation of multiple mobile microrobots. Journal of Micro-Bio Robotics 12:21–31

    Article  Google Scholar 

  21. 21.

    Hu S, Sun D, Feng G (2010) Dynamics analysis and closed-loop control of biological cells in transportation using robotic manipulation system with optical tweezers. In: 2010 I.E. Conference on automation science and engineering (CASE), pp 240–245

    Google Scholar 

  22. 22.

    Tanaka Y, Kawada H, Hirano K, Ishikawa M, Kitajima H (2018) Automated manipulation of non-spherical micro-objects using optical tweezers combined with image processing techniques. Opt Express 16: 15115–15122

  23. 23.

    Banerjee AG, Pomerance A, Losert W, Gupta SK (2010) Developing a stochastic dynamic programming framework for optical tweezer-based automated particle transport operations. IEEE Trans Autom Sci Eng 7:218–227

    Article  Google Scholar 

  24. 24.

    Ju T, Liu S, Yang J, Sun D (2011) Apply RRT-based path planning to robotic manipulation of biological cells with optical tweezer. In: 2011 International conference on mechatronics and automation (ICMA), pp 221–226

    Google Scholar 

  25. 25.

    Cappelleri DJ, Fatovic M, Shah U (2011) Caging micromanipulation for automated microassembly. In: 2011 I.E. International conference on robotics and automation (ICRA), pp 3145–3150

    Google Scholar 

  26. 26.

    Belharet K, Folio D, Ferreira A (2010) Endovascular navigation of a ferromagnetic microrobot using MRI-based predictive control. In: 2010 IEEE/RSJ International conference on intelligent robots and systems (IROS), pp 2804–2809

    Google Scholar 

  27. 27.

    Kim DH, Brigandi S, Julius AA, Min Jun K (2011) Real-time feedback control using artificial magnetotaxis with rapidly-exploring random tree (RRT) for Tetrahymena pyriformis as a microbiorobot. In: 2011 I.E. International conference on robotics and automation, pp 3183–3188

    Google Scholar 

  28. 28.

    Pieters R, Tung H-W, Charreyron S, Sargent DF, Nelson BJ (2015) RodBot: a rolling microrobot for micromanipulation. In: 2015 I.E. International conference on robotics and automation (ICRA), pp 4042–4047

  29. 29.

    Pieters R, Lombriser S, Alvarez-Aguirre A, Nelson BJ (2016) Model predictive control of a magnetically guided rolling microrobot. IEEE Robotics and Automation Letters 1:455–460

    Article  Google Scholar 

  30. 30.

    Scheggi S, Misra S (2016) An experimental comparison of path planning techniques applied to micro-sized magnetic agents. In: 2016 international conference on manipulation, automation and robotics at small scales (MARSS), pp 1–6

    Google Scholar 

  31. 31.

    Soetanto D, Lapierre L, Pascoal A (2003)Adaptive, non-singular path-following control of dynamic wheeled robots. In: 42nd IEEE International conference on decision and control (IEEE Cat No03CH37475), vol 2, pp 1765–1770

  32. 32.

    Jiang Z-P, Lefeber E, Nijmeijer H (2001) Saturated stabilization and tracking of a nonholonomic mobile robot. In: Systems & control letters, vol 42, pp 327–332

  33. 33.

    Belharet K, Folio D, Ferreira A (2013) Simulation and planning of a magnetically actuated microrobot navigating in the arteries. IEEE Trans Biomed Eng 60:994–1001

    Article  Google Scholar 

  34. 34.

    Xu T, Hwang G, Andreff N, Régnier S (2015) Planar path following of 3-D steering scaled-up helical microswimmers. IEEE Trans Robot 31:117–127

    Article  Google Scholar 

  35. 35.

    Cheang UK, Milutinović D, Choi J, Kim MJ (2014) Towards model-based control of achiral microswimmers. In: Presented at the the ASME dynamic systems and control conference, TX, USA

  36. 36.

    Konolige K (2000) A gradientmethod for realtime robot control. In: 2000 IEEE/RSJ Proceedings in international conference on intelligent Robots and Systems (IROS 2000) (Cat. No00CH37113), vol 1, pp 639–646

  37. 37.

    Happel J, Brenner H (1965) Low Reynolds number hydrodynamics: with special applications to particulate media, vol 1, Springer

  38. 38.

    Siciliano B, Sciavicco L, Villani L, Oriolo G (2010) Robotics: modelling, planning and control. Springer Science & Business Media

  39. 39.

    Aicardi M, Casalino G, Bicchi A, Balestrino A (1995) Closed loop steering of unicycle like vehicles via Lyapunov techniques. IEEE Robot Autom Mag 2:27–35

    Article  Google Scholar 

  40. 40.

    Farrokhsiar M, Pavlik G, Najjaran H (2013) An integrated robust probing motion planning and control scheme: a tube-based MPCapproach. Robot Auton Syst 61:1379–1391

    Article  Google Scholar 

  41. 41.

    Cheang UK, Kim H, Milutinović D, Choi J, Kim MJ (2017) Feedback control of an achiral robotic microswimmer. J Bionic Eng 14:245–259

    Article  Google Scholar 

  42. 42.

    Cheang UK, Meshkati F, Kim H, Lee K, Fu HC, Kim MJ (2016) Versatile microrobotics using simplemodular subunits, vol 6, p 30472

Download references


We thank Prof. Dejan Milutinović and Prof. Jongeun Choi for their contribution in developing the kinematic model. This work was funded by National Science Foundation (CMMI#1712096).

Author information



Corresponding author

Correspondence to Min Jun Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(MP4 766 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Cheang, U., Rogowski, L.W. et al. Motion planning of particle based microrobots for static obstacle avoidance. J Micro-Bio Robot 14, 41–49 (2018).

Download citation


  • Microrobot
  • Magnetic control
  • Obstacle avoidance
  • Path planning