Advertisement

Journal of Micro-Bio Robotics

, Volume 14, Issue 1–2, pp 25–34 | Cite as

Experiments and open-loop control of multiple catalytic microrobots

  • Sambeeta Das
  • Edward B. Steager
  • M. Ani Hsieh
  • Kathleen J. Stebe
  • Vijay Kumar
Research Paper

Abstract

The ability to direct microrobots in the low Reynolds number regime has broad applications in engineering, biology and medicine. In contrast to externally driven robots, catalytically driven microrobots utilize chemical reactions to hyphenate all instances in solution. Controlling multiple self propelled microrobots in the same workspace has been an ongoing challenge for the field. In this paper we present a novel method for open loop control of multiple microrobots in the same workspace by combining their catalytic actuation with magnetic actuation. By using a catalytic cap to regulate the directions of motion and leveraging the inherent variations in model parameters in a collection of paramagnetic microrobots, we show how collective motion patterns can be achieved. We validate our proposed strategy in simulations using a simple kinematic model of each robot, and in experiments. Our results suggest that simultaneous steering of multiple microrobots to arbitrary locations might be controllable using sophisticated control techniques such as ensemble control.

Keywords

Micromotor Microrobot Magnetically controlled Open-loop control Self-propelled 

Notes

Acknowledgments

We gratefully acknowledge the support of ONR grant N00014-11-1-0725, NSF grant CNS-1446592, GAANN grant P200A120246, NSF DMR 1607878 and MRSEC grant DMR11-20901.

Supplementary material

12213_2018_106_MOESM1_ESM.avi (12.8 mb)
(AVI 12.8 MB)
12213_2018_106_MOESM2_ESM.avi (33.2 mb)
(AVI 33.2 MB)
12213_2018_106_MOESM3_ESM.avi (374 kb)
(AVI 373 KB)

(AVI 4.76 MB)

(AVI 2.62 MB)

12213_2018_106_MOESM6_ESM.docx (164 kb)
(DOCX 164 KB)

References

  1. 1.
    Duan W, Wang W, Das S, Yadav V, Mallouk TE, Sen A (2015) Synthetic nano- and micromachines in analytical chemistry: sensing, migration, capture, delivery, and separation. Annual Rev Anal Chem (Palo Alto Calif.) 8:311–333CrossRefGoogle Scholar
  2. 2.
    Solovev AA, Xi W, Gracias DH, Harazim SM, Deneke C, Sanchez S, Schmidt OG (2012) Self-propelled nanotools. ACS Nano 6(2):1751–1756CrossRefGoogle Scholar
  3. 3.
    Sanchez S, Solovev AA, Harazim SM, Schmidt OG (2011) Microbots swimming in the flowing streams of microfluidic channels. J Am Chem Soc 133(4):701–703CrossRefGoogle Scholar
  4. 4.
    Dey KK, Das S, Poyton MF, Sengupta S, Butler PJ, Cremer PS, Sen A (2014) Chemotactic separation of enzymes. ACS Nano 8(12):11941–11949CrossRefGoogle Scholar
  5. 5.
    Tottori S, Zhang L, Qiu F, Krawczyk KK, Franco-Obregȯn A, Nelson BJ (2012) Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Advan Mater (Deerfield Beach Fla) 24(6):811–816CrossRefGoogle Scholar
  6. 6.
    Wang J (2012) Cargo-towing synthetic nanomachines: towards active transport in microchip devices. Lab on a Chip 12(11):1944–1950CrossRefGoogle Scholar
  7. 7.
    Chang ST, Paunov VN, Petsev DN, Velev OD (2007) Remotely powered self-propelling particles and micropumps based on miniature diodes. Nature Mater 6(3):235–240CrossRefGoogle Scholar
  8. 8.
    Wang W, Li S, Mair L, Ahmed S, Huang TJ, Mallouk TE (2014) Acoustic propulsion of nanorod motors inside living cells. Angewandte Chemie (International ed in English) 53(12):3201–3204CrossRefGoogle Scholar
  9. 9.
    Wang W, Duan W, Ahmed S, Sen A, Mallouk TE (2015) From one to many: dynamic assembly and collective behavior of self-propelled colloidal motors. Accounts Chem Res 48(7):1938–1946CrossRefGoogle Scholar
  10. 10.
    Wang W, Duan W, Ahmed S, Mallouk TE, Sen A (2013) Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 8(5):531–554CrossRefGoogle Scholar
  11. 11.
    Jiang H-R, Yoshinaga N, Sano M (2010) Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys Rev Lett 105(26):268302CrossRefGoogle Scholar
  12. 12.
    Zhang L, Abbott JJ, Dong L, Kratochvil BE, Bell D, Nelson BJ (2009) Artificial bacterial flagella: fabrication and magnetic control. Appl Phys Lett 94(6):064107CrossRefGoogle Scholar
  13. 13.
    Evans BA, Shields AR, Carroll RL, Washburn S, Falvo MR, Superfine R (2007) Magnetically actuated nanorod arrays as biomimetic cilia. Nano Lett 7(5):1428–1434CrossRefGoogle Scholar
  14. 14.
    Magdanz V, Sanchez S, Schmidt OG (2013) Development of a sperm-flagella driven micro-bio-robot. Adv Mater 25(45):6581–6588.  https://doi.org/10.1002/adma.201302544 CrossRefGoogle Scholar
  15. 15.
    Purcell E (1977) Life at low reynolds number. Am J Phys 45(1):3CrossRefGoogle Scholar
  16. 16.
    Gao W, Pei A, Dong R, Wang J (2014) Catalytic iridium-based Janus micromotors powered by ultralow levels of chemical fuels. J Am Chem Soc 136(6):2276–2279CrossRefGoogle Scholar
  17. 17.
    Honda T, Arai K, Ishiyama K (1996) Micro swimming mechanisms propelled by external magnetic fields. IEEE Trans Magn 32(5):5085–5087CrossRefGoogle Scholar
  18. 18.
    Carlsen RW, Edwards MR, Zhuang J, Pacoret C, Sitti M (2014) Magnetic steering control of multi-cellular bio-hybrid microswimmers. Lab Chip 14:3850–3859.  https://doi.org/10.1039/C4LC00707G CrossRefGoogle Scholar
  19. 19.
    Palacci J, Sacanna S, Steinberg AP, Pine DJ, Chaikin PM (2013) Living crystals of light-activated colloidal surfers. Science 339(6122):936–940CrossRefGoogle Scholar
  20. 20.
    Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24(21):3563–3576CrossRefGoogle Scholar
  21. 21.
    Kline TR, Paxton WF, Mallouk TE, Sen A (2005) Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angewandte Chemie (International ed in English) 44(5):744–746CrossRefGoogle Scholar
  22. 22.
    Mirkovic T, Zacharia NS, Scholes GD, Ozin GA (2010) Nanolocomotion - catalytic nanomotors and nanorotors. Small (Weinheim an der Bergstrasse Germany) 6(2):159–167CrossRefGoogle Scholar
  23. 23.
    Gao W, Feng X, Pei A, Gu Y, Li J, Wang J (2013) Seawater-driven magnesium based Janus micromotors for environmental remediation. Nanoscale 5(11):4696–4700CrossRefGoogle Scholar
  24. 24.
    Sundararajan S, Lammert PE, Zudans AW, Crespi VH, Sen A (2008) Catalytic motors for transport of colloidal cargo. Nano Lett 8(5):1271–1276CrossRefGoogle Scholar
  25. 25.
    Lee K, Yi Y, Yu Y (2016) Remote control of t cell activation using magnetic janus particles. Angew Chem Int Ed 55(26):7384–7387CrossRefGoogle Scholar
  26. 26.
    Ng AHC, Choi K, Luoma RP, Robinson JM, Wheeler AR (2012) Digital microfluidic magnetic separation for particle-based immunoassays. Anal Chem 84(20):8805–8812CrossRefGoogle Scholar
  27. 27.
    Khalil ISM, Magdanz V, Sanchez S, Schmidt OG, Misra S (2015) Precise localization and control of catalytic janus micromotors using weak magnetic fields. Int J Adv Robot Syst 12(1):2CrossRefGoogle Scholar
  28. 28.
    Rikken RSM, Nolte RJM, Maan JC, van Hest JCM, Wilson DA, Christianen PCM (2014) Manipulation of micro- and nanostructure motion with magnetic fields. Soft Matter 10:1295–1308.  https://doi.org/10.1039/C3SM52294F CrossRefGoogle Scholar
  29. 29.
    Huang W, Manjare M, Zhao Y (2013) Catalytic nanoshell micromotors. J Phys Chem C 117 (41):21590–21596CrossRefGoogle Scholar
  30. 30.
    Diller E, Giltinan J, Sitti M (2013) Independent control of multiple magnetic microrobots in three dimensions. Int J Robot ResGoogle Scholar
  31. 31.
    Donald B, Levey C, Paprotny I (2008) Planar microassembly by parallel actuation of MEMS microrobots. J Microelectromech Syst 17(4):789–808CrossRefGoogle Scholar
  32. 32.
    Das S, Steager EB, Stebe KJ, Kumar V (2017) Simultaneous control of spherical microrobots using catalytic and magnetic actuation. In: International conference on manipulation, automation and robotics at small scales (MARSS). IEEE, p 2017Google Scholar
  33. 33.
    Das S, Garg A, Campbell AI, Howse J, Sen A, Velegol D, Golestanian R, Ebbens SJ (2015) Boundaries can steer active Janus spheres. Nat Commun 6:8999CrossRefGoogle Scholar
  34. 34.
    Baraban L, Tasinkevych M, Popescu MN, Sanchez S, Dietrich S, Schmidt OG (2012) Transport of cargo by catalytic janus micro-motors. Soft Matter 8:48–52.  https://doi.org/10.1039/C1SM06512B CrossRefGoogle Scholar
  35. 35.
    Brown A, Poon W (2014) Ionic effects in self-propelled pt-coated janus swimmers. Soft Matter 10 (22):4016–4027CrossRefGoogle Scholar
  36. 36.
    Gregory DA, Campbell AI, Ebbens SJ (2015) Effect of catalyst distribution on spherical bubble swimmer trajectories. J Phys Chem C 119(27):15339–15348.  https://doi.org/10.1021/acs.jpcc.5b03773 CrossRefGoogle Scholar
  37. 37.
    Das S, Shklyaev OE, Altemose A, Shum H, Ortiz-Rivera I, Valdez L, Mallouk TE, Balazs AC, Sen A (2017) Harnessing catalytic pumps for directional delivery of microparticles in microchambers. Nat Commun 8:14384CrossRefGoogle Scholar
  38. 38.
    Li JS, Khaneja N (2006) Ensemble controllability of the bloch equations. In: Proceedings of the 45th IEEE conference on decision and control, pp 2483–2487Google Scholar
  39. 39.
    Li J-S, Khaneja N (2007) Ensemble control of linear systems. In: 2007 46th IEEE conference on decision and control, pp 3768–3773Google Scholar
  40. 40.
    Qi J, Zlotnik A, Li JS (2013) Optimal ensemble control of stochastic linear systems. In: 52nd IEEE conference on decision and control, pp 3091–3096Google Scholar
  41. 41.
    Qi J, Li JS (2013) Ensemble controllability of time-invariant linear systems. In: 52nd IEEE conference on decision and control, pp 2709–2714Google Scholar
  42. 42.
    Bretl T (2007) Control of many agents using few instructions. In: Proceedings of the robotics: science and systems. Jeju, Korea, vol 6, p 2007Google Scholar
  43. 43.
    Chan HB, Dykman M, Stambaugh C (2008) Switching-path distribution in multidimensional systems. Phys Rev E 78:051109.  https://doi.org/10.1103/PhysRevE.78.051109 CrossRefGoogle Scholar
  44. 44.
    Schwartz IB, Billings L, Dykman M, Landsman A (2009) Predicting extinction rates in stochastic epidemic models. J Stat Mech: Theory Exper 2009(01):P01005. [Online]. Available: http://stacks.iop.org/1742-5468/2009/i=01/a=P01005 CrossRefGoogle Scholar
  45. 45.
    Wang F, Pauletti GM, Wang J, Zhang J, Ewing RC, Wang Y, Shi D (2013) Dual surface-functionalized janus nanocomposites of polystyrene/fe3o4@sio2 for simultaneous tumor cell targeting and stimulus-induced drug release. Adv Mater 25(25):3485–3489.  https://doi.org/10.1002/adma.201301376 CrossRefGoogle Scholar
  46. 46.
    Yi Y, Sanchez L, Gao Y, Yu Y (2016) Janus particles for biological imaging and sensing. Analyst 141:3526–3539.  https://doi.org/10.1039/C6AN00325G CrossRefGoogle Scholar
  47. 47.
    Manjare M, Yang B, Zhao Y-P (2012) Bubble driven quasioscillatory translational motion of catalytic micromotors. Phys Rev Lett 109:128305.  https://doi.org/10.1103/PhysRevLett.109.128305 CrossRefGoogle Scholar
  48. 48.
    Wang S, Wu N (2014) Selecting the swimming mechanisms of colloidal particles: Bubble propulsion versus self-diffusiophoresis. Langmuir 30(12):3477–3486. pMID: 24593832.  https://doi.org/10.1021/la500182f CrossRefGoogle Scholar
  49. 49.
    Valadares LF, Tao Y-G, Zacharia NS, Kitaev V, Galembeck F, Kapral R, Ozin GA (2010) Catalytic nanomotors: self-propelled sphere dimers. Small 6(4):565–572.  https://doi.org/10.1002/smll.200901976 CrossRefGoogle Scholar
  50. 50.
    Ebbens SJ, Howse JR (2011) Direct observation of the direction of motion for spherical catalytic swimmers. Langmuir 27(20):12293–12296. pMID: 21928845.  https://doi.org/10.1021/la2033127 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GRASP Laboratory, School of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Chemical and Biomolecular Engineering, School of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations